Results 101 to 110 of about 53,196 (246)

Synergetic Lattice and Surface Engineering: Stable High‐Voltage Cycle Performance in P3‐Type Layered Manganese Oxide

open access: yesAdvanced Energy Materials, EarlyView.
A dual lattice‐surface strategy employing NaTi2(PO4)3 is adopted to enhance the performance of P3‐type Na0.67[Zn0.3Mn0.7]O2, whereby Ti stabilizes the bulk lattice and surface P species mitigate degradation, collectively improving high‐voltage cycling stability, Na+ diffusion, and oxygen redox reversibility through synergistic structural and ...
Natalia Voronina   +13 more
wiley   +1 more source

Validating large-scale quantum machine learning: efficient simulation of quantum support vector machines using tensor networks

open access: yesMachine Learning: Science and Technology
We present an efficient tensor-network-based approach for simulating large-scale quantum circuits exemplified by quantum support vector machines (QSVMs).
Kuan-Cheng Chen   +8 more
doaj   +1 more source

Prediction of Structural Stability of Layered Oxide Cathode Materials: Combination of Machine Learning and Ab Initio Thermodynamics

open access: yesAdvanced Energy Materials, EarlyView.
In this work, we developed a phase‐stability predictor by combining machine learning and ab initio thermodynamics approaches, and identified the key factors determining the favorable phase for a given composition. Specifically, a lower TM ionic potential, higher Na content, and higher mixing entropy favor the O3 phase.
Liang‐Ting Wu   +6 more
wiley   +1 more source

Breaking the Durability–Power Trade‐Off: Boron‐Directed Faceted O3 Cathodes for High‐Rate Sodium‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Boron‐oxide‐assisted particle engineering stabilizes O3‐type layered cathodes for sodium‐ion batteries by mitigating phase transitions and lattice strain. Acting as flux and structural modifier, boron forms submicron hexagonal platelets with (003) facets and expanded Na‐layer spacing, enabling rapid Na⁺ diffusion and mechanical resilience.
Tengfei Song   +9 more
wiley   +1 more source

Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications [PDF]

open access: diamond, 2015
Rodrigo da Rosa Righi   +4 more
openalex   +1 more source

Advancing Direct Alcohol Fuel Cells: Innovations in Composite‐Based Electrocatalysts and Polymer Support Materials for Enhanced Efficiency

open access: yesAdvanced Energy and Sustainability Research, EarlyView.
This graphical abstract emphasizes the working principle and the various essential factors of the direct methanol fuel cell (DMFCs). Additionally, various parameters, such as the nanoparticle's size and shape, the nature of the electrolyte, the type of support materials, and their fabrication process, also play essential roles in the functioning of the
Kirti Mishra   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy