Results 251 to 260 of about 908,738 (290)

Multiomics Analyses Reveal an Essential Role of Tryptophan in Treatment of csDMARDs in Rheumatoid Arthritis

open access: yesAdvanced Science, EarlyView.
Rheumatoid arthritis is a disease characterized by joint inflammation. Approximately 50% of patients show insufficient response to traditional synthetic disease‐modifying antirheumatic drugs. This study aims to elucidate differential molecular profiles of the mechanisms underlying drug responses through multi‐omics strategy.
Congcong Jian   +26 more
wiley   +1 more source

ZOVER 2.0: a virome-based platform for zoonotic and vector-borne viruses. [PDF]

open access: yesNucleic Acids Res
Liu B   +9 more
europepmc   +1 more source

RIG‐I Mediated Neuron‐Specific IFN Type 1 Signaling in FUS‐ALS Induces Neurodegeneration and Offers New Biomarker‐Driven Individualized Treatment Options for (FUS‐)ALS

open access: yesAdvanced Science, EarlyView.
Using iPSC‐derived motoneurons and postmortem tissue from FUS‐ALS patients, it is demonstrated that increased mitochondrial transcription leads to elevated cytosolic double‐stranded RNA (dsRNA) levels. This aberrant accumulation activates a RIG‐I–dependent innate immune response leading to neurodegeneration, which is amenable for FDA‐ and EMA‐approved ...
Marcel Naumann   +26 more
wiley   +1 more source

Paths of legal recognition of genetic counselors in Canada: A framework for action. [PDF]

open access: yesJ Genet Couns
Patrinos D   +5 more
europepmc   +1 more source

ROS Activated NETosis of Bone Marrow CD55+ Intermediate Mature Neutrophils Through HIF1α‐PADI4 Pathway to Initiate Bone Aging

open access: yesAdvanced Science, EarlyView.
In this study, we find CD55+ neutrophils show activated NETosis within bone marrow, induce BMSC senescence and osteogenesis inhibition, finally leading to bone aging initiation. Mechanistically, ROS synergizes with the CD55‐driven HIF1α‐PADI4 pathway to promote NETosis.
Yutong Guo   +6 more
wiley   +1 more source

Genome‐Wide by Lifetime Environment Interaction Studies of Brain Imaging Phenotypes

open access: yesAdvanced Science, EarlyView.
This study explores genome‐wide by lifetime environment interactions on brain imaging phenotypes. Gene‐environment interactions explain more phenotypic variance than main effects, pinpoint regulatory variants, and reveal exposure‐specific biological pathways.
Sijia Wang   +51 more
wiley   +1 more source

ntSynt: multi-genome synteny detection using minimizer graph mappings. [PDF]

open access: yesBMC Biol
Coombe L   +4 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy