Results 81 to 90 of about 7,133 (231)
Euler Numbers and Polynomials Associated with Zeta Functions
For s∈ℂ, the Euler zeta function and the Hurwitz-type Euler zeta function are defined by ζE(s)=2∑n=1∞((−1)n/ns), and ζE(s,x)=2∑n=0∞((−1)n/(n+x)s). Thus, we note that the Euler zeta functions are entire functions in whole complex s-plane, and these zeta ...
Taekyun Kim
doaj +1 more source
Asymptotic expansions of the Hurwitz–Lerch zeta function
In the paper, a generalization of the asymptotic expansions obtained by \textit{M.~Katsurada} [Proc.~Japan Acad. 74, No. 10, 167--170 (1998; Zbl 0937.11035)] and \textit{D.~Klusch} [J.~Math. Anal. Appl. 170, No. 2, 513--523 (1992; Zbl 0763.11036)] for the Lipschitz-Lerch zeta function \[ R(a, x, s)\equiv\sum_{k=0}^\infty {e^{2k\pi ix}\over (a+k)^s ...
Ferreira, Chelo, López, José L.
openaire +2 more sources
ABSTRACT In bio‐social models, cooperative behavior has evolved as an adaptive strategy, playing multi‐functional roles. One of such roles in populations is to increase the success of the survival and reproduction of individuals and their families or social groups.
Sangeeta Saha +2 more
wiley +1 more source
Safety Filters Against Actuator Attacks
ABSTRACT This manuscript focuses on mitigating the effect of deception attacks on control signals, that is, in the presence of an adversary that tampers with data coming from the controller to the system actuators in order to degrade the plant performance.
Cédric Escudero +4 more
wiley +1 more source
Structure of hyperbolic polynomial automorphisms of C2${\mathbb {C}^2}$ with disconnected Julia sets
Abstract For a hyperbolic polynomial automorphism of C2$\mathbb {C}^2$ with a disconnected Julia set, and under a mild dissipativity condition, we give a topological description of the components of the Julia set. Namely, there are finitely many “quasi‐solenoids” that govern the asymptotic behavior of the orbits of all nontrivial components.
Romain Dujardin, Mikhail Lyubich
wiley +1 more source
On a generalization of Euler's constant [PDF]
A one parameter generalization of Euler's constant γ from [Numer. Algorithms 46(2) (2007) 141--151] is investigated, and additional expressions for γ are derived.
Stephen Kaczkowski
doaj
Note on the Hurwitz–Lerch Zeta Function of Two Variables [PDF]
Junesang Choi +3 more
openalex +1 more source
Lp$L^p$‐norm bounds for automorphic forms via spectral reciprocity
Abstract Let g$g$ be a Hecke–Maaß cusp form on the modular surface SL2(Z)∖H$\operatorname{SL}_2(\mathbb {Z}) \backslash \mathbb {H}$, namely an L2$L^2$‐normalised non‐constant Laplacian eigenfunction on SL2(Z)∖H$\operatorname{SL}_2(\mathbb {Z}) \backslash \mathbb {H}$ that is additionally a joint eigenfunction of every Hecke operator. We prove the L4$L^
Peter Humphries, Rizwanur Khan
wiley +1 more source
Some formulas related to Hurwitz–Lerch zeta functions [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +2 more sources
Jacobian elliptic fibrations on K3s with a non‐symplectic automorphism of order 3
Abstract Let X$X$ be a K3 surface admitting a non‐symplectic automorphism σ$\sigma$ of order 3. Building on work by Garbagnati and Salgado, we classify the Jacobian elliptic fibrations on X$X$ with respect to the action of σ$\sigma$ on their fibers. If the fiber class of a Jacobian elliptic fibration on NS(X)$\operatorname{NS}(X)$ is fixed by σ$\sigma$,
Felipe Zingali Meira
wiley +1 more source

