Results 201 to 210 of about 7,129 (230)
Some of the next articles are maybe not open access.

PERIOD DEFORMATIONS OF MULTIPLE HURWITZ ZETA FUNCTIONS

International Journal of Mathematics, 2007
We study continuous period deformations of the multiple Hurwitz zeta functions and their derivatives. Moreover we investigate period deformations of the generalized multiple gamma and sine functions and give applications.
openaire   +2 more sources

Functional independence of periodic Hurwitz zeta functions

Mathematical Notes, 2008
Given a periodic sequence \({\mathfrak a}:= \{a_m\mid m\in\mathbb Z, m\geq 0\}\) of complex numbers \(a_m\), let \[ \zeta(s,\alpha;{\mathfrak a})= \sum^\infty_{m=0} a_m(m+ \alpha)^{-s}. \] The so-called periodic Hurwitz zeta-function \(s\mapsto \zeta(s,\alpha;{\mathfrak a})\) can be analytically continued to the whole complex plane.
openaire   +1 more source

The Hurwitz Zeta Function and the Lerch Zeta Function

2017
In this chapter we will discuss formulas we have developed for the evaluation of certain zeta functions. We will need them later for the numerical computation of the spectrum of the transfer operator. The implementations of these zeta functions are in a sense the heart of our computations, so we need to be very careful.
openaire   +1 more source

Inequalities for the Hurwitz zeta function

Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2000
Let be the Hurwitz zeta function. Furthermore, let p > 1 and α ≠ 0 be real numbers and n ≥ 2 be an integer. We determine the best possible constants a(p, α, n), A(p, α, n), b(p, n) and B(p, n) such that the inequalities and hold for all positive real numbers x1,…,xn.
openaire   +1 more source

On Discrete Universality of the Hurwitz Zeta-Function

Results in Mathematics, 2017
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +1 more source

DirichletL-function and power series for Hurwitz zeta function

Proceedings of the Indian Academy of Sciences - Section A, 1993
Let \(\zeta(s,a)= \sum^ \infty_{n=0} (n+a)^{-s}\) be the Hurwitz zeta-function. For fixed complex \(s\neq 1\) it is shown that \(\zeta(s,a)- a^{-s}\) is holomorphic, as a function of \(a\), in the disc \(| a|
openaire   +2 more sources

ON THE UNIVERSALITY OF THE HURWITZ ZETA-FUNCTION

International Journal of Number Theory, 2012
It is known that the Hurwitz zeta-function ζ(s, α) with transcendental or rational parameter α is universal in the sense that its shifts ζ(s + iτ, α), τ ∈ ℝ, approximate with a given accuracy any analytic function uniformly on compact subsets of the strip D = {s ∈ ℂ : ½ < σ < 1}. Let H(D) denote the space of analytic functions on D equipped with
openaire   +1 more source

DLS and zeta potential – What they are and what they are not?

Journal of Controlled Release, 2016
Sourav Bhattacharjee
exaly  

Home - About - Disclaimer - Privacy