Results 261 to 270 of about 669,973 (330)

A fluorine-free electrolyte for calcium metal batteries.

open access: yesEES Batter
Kachmar A   +10 more
europepmc   +1 more source

Transparent Inorganic–Organic Bilayer Neural Electrode Array and Integration to Miniscope System for In Vivo Calcium Imaging and Electrophysiology

open access: yesAdvanced Functional Materials, EarlyView.
This study presents the BioCLEAR system, a highly transparent and conductive neural electrode array composed of silver nanowires (AgNWs) and doped PEDOT:PSS, enabling neural recordings with minimal optical artifacts. When integrated with a GRIN lens, this cost‐effective neural implant allows simultaneous electrophysiological recording and GCaMP6‐based ...
Dongjun Han   +17 more
wiley   +1 more source

Boosting the Energy Density of “Anode‐Free” Lithium Metal Batteries via Electrospun Polymeric Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
While host structures are known to enhance the reversibility and safety of lithium metal deposition, their additional volume and weight often decrease the battery's energy density and specific energy. By combining a lightweight and porous scaffold of electrospun polymer with a thinner separator, this article demonstrates a simultaneous improvement of ...
Lennart Wichmann   +6 more
wiley   +1 more source

Ionic Control of Microstructure and Lubrication in Charged, Physically Cross‐Linked Hydrogels

open access: yesAdvanced Functional Materials, EarlyView.
Here, charged, physically cross‐linked poly(methacrylamide‐co‐methacrylic acid) hydrogels stabilized by a short‐range attractive, long‐range repulsive potential is investigated. This work uncovers how salt addition alters not only swelling, but also the microstructure and dynamics, near‐surface stiffness and charge, and ultimately, its lubricity. Salts
Alexander Deptula   +1 more
wiley   +1 more source

Tailored Reconstruction of Polycrystalline CuO Nanorods Promotes C─C Coupling in CO2 Electroreduction

open access: yesAdvanced Functional Materials, EarlyView.
Controlling the polycrystallinity of CuO nanorods enables directional reconstruction into rod‐like structures that stabilize Cu(OH)2 and increase Cu+ ratios, while modulating interfacial water dynamics to enhance C─C coupling and boost C2+ product formation in CO2 electroreduction.
Hyeon‐Seok Bang   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy