Results 161 to 170 of about 611,030 (339)

Stable and Dendrite‐Free Zinc Metal Anodes Via Interface Nanoarchitectonics for Aqueous Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This review explores Zn anode challenges in aqueous ZIBs, including dendrites, corrosion, and side reactions, and discusses strategies for improvement through Zn anode, electrolyte, and separator modifications to enhance stability and efficiency. Abstract Aqueous rechargeable zinc‐ion batteries (ZIBs) are emerging as promising candidates for next ...
Pragati A. Shinde   +5 more
wiley   +1 more source

Highly Efficient 3D‐Printed PVDF‐Based Triboelectric Nanogenerators Featuring Polymorphic Perovskite Nanofillers

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates the use of a low‐cost 3D printing technique to prepare a large‐area PVDF‐FAPbI3 composite dielectric film for flexible TENG application. The δ→α phase transformation of the FAPbI3 nanofillers has significantly improved the β‐phase content, morphology, and dielectric properties of the PVDF film.
Nurfatin Hafizah Zain Karimy   +7 more
wiley   +1 more source

Dynamic Networks via Polymerizable Deep Eutectic Monomers for Uniform Li+ Transport at Interfaces in Lithium Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The PDEM‐based SIGPE provides a dynamic nanophase from Li+‐bridged molecular self‐association, enhancing electrochemical stability and facilitating uniform Li+ ion flux at the interface. This unique solvation structure results in a hetero species‐driven inorganic‐rich SEI and long‐term cycle stability, suggesting that a PFAS‐free Li+‐containing monomer
Susung Yun   +5 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Which Chromium–Sulfur Compounds Exist as 2D Material?

open access: yesAdvanced Functional Materials, EarlyView.
2D chromium sulfides synthesized using molecular beam epitaxy on graphene. Structural characterization reveals two novel 2D materials, Cr2S3‐2D, which lacks a direct bulk counterpart, and Cr223S${\rm Cr}_{2\frac{2}{3}}{\rm S}$4‐2D, a minimum thickness version of Cr5S6. However, attempts to synthesize CrS2 are unsuccessful. Both new 2D phases are stable
Affan Safeer   +5 more
wiley   +1 more source

Integration of Perovskite/Low‐Dimensional Material Heterostructures for Optoelectronics and Artificial Visual Systems

open access: yesAdvanced Functional Materials, EarlyView.
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du   +11 more
wiley   +1 more source

Engineering Strategies for 2D Layered Tin Halide Perovskite Field‐Effect Transistors

open access: yesAdvanced Functional Materials, EarlyView.
2D halide perovskites are promising candidates for field‐effect transistor (FET) applications due to their high stability and suppressed ion migration in the presence of bulky organic spacers. This review systematically summarizes the optimization engineering strategies of 2D perovskite FETs and future challenges, which provide guidance for developing ...
Shuanglong Wang   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy