Results 141 to 150 of about 262,018 (293)

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Twisted bilayer Ice as a new class of hydrogen-bonding moiré materials. [PDF]

open access: yesNat Commun
Wang L   +10 more
europepmc   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Engineering a Single Amino Acid Bionanozyme for Ultrasensitive Detection of Biomarkers: A WHO‐REASSURE‐ Aligned Approach

open access: yesAdvanced Functional Materials, EarlyView.
A unique 2D bionanozyme, engineered from a single amino acid and copper ions, demonstrates peroxidase‐mimicking catalytic activity. This efficient and simple bionanozyme allows for ultrasensitive, equipment‐free visual detection of key biomarkers in both test and real samples, meeting the WHO‐REASSURE standards for practical diagnostic applications ...
Subrat Vishwakarma   +5 more
wiley   +1 more source

MnI‐Functionalized Covalent Organic Framework as Efficient Electrocatalyst for CO2 Reduction in a Catholyte‐Free Zero‐Gap Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy