Results 261 to 270 of about 289,623 (333)

Engineering Active CeO2/Fe3C Interfacial Sites to Generate High‐Charge‐Density Fe for Enhanced Oxygen Reduction Reaction Efficiency

open access: yesAdvanced Functional Materials, EarlyView.
A well‐modulated CeO2/Fe3C heterostructure is successfully constructed. The electron redistribution induced by CeO2 not only enhances the formation energy of Fe vacancies and hinders the dissolution of Fe but also reduces the energy barrier of the ORR.
Peng Wang   +8 more
wiley   +1 more source

Tuning the Hydrogen Bond Network Inside the Helmholtz Plane for Industrial Hydrogen Evolution

open access: yesAdvanced Functional Materials, EarlyView.
The hydrogen bond network within the Helmholtz plane, a key component affecting the hydrogen evolution kinetics, remains far from having a consensus owing to the lack of fundamental understanding. Herein, it is discovered that the introduction of the atomic electric field generated by the weak Ru─Ga bonds can further improve the proportion of 4 ...
Xinyu Chen   +9 more
wiley   +1 more source

Green Solvent Enabled Perovskite Ink for Ambient‐Air‐Processed Efficient Inkjet‐Printed Perovskite Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
This study explores an eco‐friendly solvent with 1,3‐dimethyl‐2‐imidazolidinone for developing perovskite ink, enhancing grain size and formation of purer phase perovskite. The inkjet‐printed perovskite solar cells demonstrated a remarkable improvement in device power conversion efficiency from 14.6% to almost 17.8%, highlighting sustainable innovation
Vinayak Vitthal Satale   +6 more
wiley   +1 more source

Enhancing CoFe Catalysts with V2CTX MXene‐Derived Materials for Anion Exchange Membrane Electrolyzers

open access: yesAdvanced Functional Materials, EarlyView.
MXene dervied CoFe composites show increased initial Oxygen Evolution Reaction (OER) activity compared to the pure CoFe and MXene in an Anion Exchange Membrane device. Vanadium vacancies in the MXene plays a role in increased OER activity and hinders Fe leaching in the AEM device over using the pure V2C MXene as a support material for the CoFe ...
Can Kaplan   +16 more
wiley   +1 more source

Temperature‐Enhanced Supramolecular Polymer Adhesion Provided by Concurrent Utilization of Calix[4]Pyrrole and Crown Ether Molecular Recognition

open access: yesAdvanced Functional Materials, EarlyView.
Simultaneous utilization of calix[4]pyrrole‐ and crown ether‐based molecular recognition allows the construction of a high molecular weight alternating supramolecular polymer. This heat processible polymer can be used as a durable and reusable adhesive on glass and steel with temperature‐enhanced adhesion strength without the need for a solvent ...
Deniz Memis, Abdullah Aydogan
wiley   +1 more source

Bioinspired Shape Reconfigurable, Printable, and Conductive “E‐Skin” Patch with Robust Antibacterial Properties for Human Health Sensing

open access: yesAdvanced Functional Materials, EarlyView.
In this article, Hojin Kim, Sayan Deb Dutta, and co‐workers report a shape‐reconfigurable, 3D printable, and highly adhesive slime‐like ‘electronic skin’ or ‘E‐skin’ patch for human health sensing and tissue engineering applications. The dual reinforcement of hydrogel patch with carbon nanotubes (CNTs) and cellulose nanocrystals (CNCs) improve the ...
Hojin Kim   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy