Results 1 to 10 of about 3,007,544 (224)
Ulam-Hyers-Rassias Stability of Stochastic Functional Differential Equations via Fixed Point Methods [PDF]
The Ulam-Hyers-Rassias stability for stochastic systems has been studied by many researchers using the Gronwall-type inequalities, but there is no research paper on the Ulam-Hyers-Rassias stability of stochastic functional differential equations via ...
Abdellatif Ben Makhlouf +2 more
doaj +2 more sources
Exponential and Hyers-Ulam stability of impulsive linear system of first order [PDF]
. In this manuscript, we study the exponential stability and Hyers–Ulam stability of the linear fi rst order impulsive differential system. We prove that the homogeneous impulsive system is exponentially stable if and only if the solution of the ...
Dildar Shah, Usman Riaz, Akbar Zada
openalex +2 more sources
A Generalized ML-Hyers-Ulam Stability of Quadratic Fractional Integral Equation
An interesting quadratic fractional integral equation is investigated in this work via a generalized Mittag-Leffler (ML) function. The generalized ML–Hyers–Ulam stability is established in this investigation.
Kaabar Mohammed K. A. +5 more
doaj +2 more sources
Hyers-Ulam stability of exact second-order linear differential equations [PDF]
In this article, we prove the Hyers-Ulam stability of exact second-order linear differential equations. As a consequence, we show the Hyers-Ulam stability of the following equations: second-order linear differential equation with constant coefficients ...
Badrkhan Alizadeh +3 more
core +3 more sources
On the stability of first order impulsive evolution equations [PDF]
In this paper, concepts of Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for impulsive evolution equations are raised.
JinRong Wang, Michal Fečkan, Yong Zhou
doaj +1 more source
The objective of this article is to investigate a coupled implicit Caputo fractional $ p $-Laplacian system, depending on boundary conditions of integral type, by the substitution method.
Dongming Nie +3 more
doaj +1 more source
Aboodh transform and the stability of second order linear differential equations
In this paper, we introduce a new integral transform, namely Aboodh transform, and we apply the transform to investigate the Hyers–Ulam stability, Hyers–Ulam–Rassias stability, Mittag-Leffler–Hyers–Ulam stability, and Mittag-Leffler–Hyers–Ulam–Rassias ...
Ramdoss Murali +3 more
doaj +1 more source
The present paper is devoted to discussing a class of nonlinear Caputo-type fractional differential equations with two-point type boundary value conditions.
Chen Chen, Li Liu, Qixiang Dong
semanticscholar +1 more source
Hyers-Ulam-Rassias Stability for Linear and Semi-Linear Systems of Differential Equations [PDF]
This paper considers Hyers-Ulam-Rassias Stability for Linear and Semi-Linear Systems of Differential Equations. We establish sufficient conditions of Hyers-Ulam-Rassias stability and Hyers-Ulam stability for linear and semi-linear systems of differential
Maher Qarawani
doaj +1 more source
In this paper, we investigate the existence and uniqueness of a solution for a class of ψ-Hilfer implicit fractional integro-differential equations with mixed nonlocal conditions.
Chatthai Thaiprayoon +2 more
doaj +1 more source

