Results 21 to 30 of about 6,477 (177)

Ulam-Type Stability for a Boundary-Value Problem for Multi-Term Delay Fractional Differential Equations of Caputo Type

open access: yesAxioms, 2022
A boundary-value problem for a couple of scalar nonlinear differential equations with a delay and several generalized proportional Caputo fractional derivatives is studied. Ulam-type stability of the given problem is investigated.
Ravi P. Agarwal, Snezhana Hristova
doaj   +1 more source

Hyers-Ulam-Rassias stability of generalized module left (m,n)-derivations [PDF]

open access: yes, 2013
The generalized Hyers-Ulam-Rassias stability of generalized module left ▫$(m,n)$▫-derivations on a normed algebra ▫$mathcal{A}$▫ into a Banach left ▫$mathcal{A}$▫-module is established.V članku je obravnavana Hyers-Ulam-Rassias stabilnost posplošenih ...
Fošner, Ajda
core   +1 more source

Hyers-Ulam stability of exact second-order linear differential equations [PDF]

open access: yes, 2012
In this article, we prove the Hyers-Ulam stability of exact second-order linear differential equations. As a consequence, we show the Hyers-Ulam stability of the following equations: second-order linear differential equation with constant coefficients ...
Badrkhan Alizadeh   +3 more
core   +1 more source

Ulam-Hyers stability of a parabolic partial differential equation

open access: yesDemonstratio Mathematica, 2019
The goal of this paper is to give an Ulam-Hyers stability result for a parabolic partial differential equation. Here we present two types of Ulam stability: Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability.
Marian Daniela   +2 more
doaj   +1 more source

Practical Ulam-Hyers-Rassias stability for nonlinear equations [PDF]

open access: yesMathematica Bohemica, 2017
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets.
Jin Rong Wang, Michal Fečkan
doaj   +1 more source

Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition

open access: yesAdvances in Difference Equations, 2017
In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional ...
Akbar Zada, Sartaj Ali, Yongjin Li
doaj   +1 more source

Ulam-Hyers stabilities of fractional functional differential equations

open access: yesAIMS Mathematics, 2020
From the first results on Ulam-Hyers stability, what has been noted is the exponential growth of the researchers dedicated to investigating Ulam-Hyers stability of fractional differential equation solutions whether they are functional, evolution ...
J. Vanterler da C. Sousa   +2 more
doaj   +1 more source

A Generalized ML-Hyers-Ulam Stability of Quadratic Fractional Integral Equation

open access: yesNonlinear Engineering, 2021
An interesting quadratic fractional integral equation is investigated in this work via a generalized Mittag-Leffler (ML) function. The generalized ML–Hyers–Ulam stability is established in this investigation.
Kaabar Mohammed K. A.   +5 more
doaj   +1 more source

Satbility of Ternary Homomorphisms via Generalized Jensen Equation

open access: yes, 2005
In this paper, we establish the generalized Hyers--Ulam--Rassias stability of homomorphisms between ternary algebras associted to the generalized Jensen functional equation $r f(\frac{sx+ty}{r}) = s f(x) + t f(y)$.Comment: 12 ...
Moslehian, Mohammad Sal   +1 more
core   +2 more sources

Four Different Ulam-Type Stability for Implicit Second-Order Fractional Integro-Differential Equation with M-Point Boundary Conditions

open access: yesMathematics
In this paper, we discuss the existence and uniqueness of a solution for the implicit two-order fractional integro-differential equation with m-point boundary conditions by applying the Banach fixed point theorem.
Ilhem Nasrallah   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy