Results 41 to 50 of about 3,007,544 (224)
The main aim of this study is to examine the Hyers–Ulam stability of fractional derivatives in Volterra–Fredholm integro-differential equations using Caputo fractional derivatives.
G. Gokulvijay +2 more
semanticscholar +1 more source
Hyers–Ulam stability of second-order differential equations using Mahgoub transform
The aim of this research is investigating the Hyers–Ulam stability of second-order differential equations. We introduce a new method of investigation for the stability of differential equations by using the Mahgoub transform. This is the first attempt of
Antony Raj Aruldass +2 more
semanticscholar +1 more source
In this paper, we discuss the existence and uniqueness of a solution for the implicit two-order fractional integro-differential equation with m-point boundary conditions by applying the Banach fixed point theorem.
Ilhem Nasrallah +2 more
doaj +1 more source
Hyers-Ulam Stability of Differentiation Operator on Hilbert Spaces of Entire Functions
We investigate the Hyers-Ulam stability of differentiation operator on Hilbert spaces of entire functions. We give a necessary and sufficient condition in order that the operator has the Hyers-Ulam stability and also show that the best constant of Hyers ...
Chun Wang, Tian-Zhou Xu
doaj +1 more source
Approximate Homomorphisms of Ternary Semigroups
A mapping $f:(G_1,[ ]_1)\to (G_2,[ ]_2)$ between ternary semigroups will be called a ternary homomorphism if $f([xyz]_1)=[f(x)f(y)f(z)]_2$. In this paper, we prove the generalized Hyers--Ulam--Rassias stability of mappings of commutative semigroups into ...
A. Cayley +22 more
core +2 more sources
ABSTRACT This paper investigates the generalized Hyers–Ulam stability of the Laplace equation subject to Neumann boundary conditions in the upper half‐space. Traditionally, Hyers–Ulam stability problems for differential equations are analyzed by examining the system's error, particularly in relation to a forcing term.
Dongseung Kang +2 more
wiley +1 more source
Stability of Partial Differential Equations by Mahgoub Transform Method
The stability theory is an important research area in the qualitative analysis of partial differential equations. The Hyers-Ulam stability for a partial differential equation has a very close exact solution to the approximate solution of the differential
Harun Biçer
doaj +1 more source
Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems [PDF]
In this paper, we prove some existence, uniqueness and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random operators on separable complete metric spaces. The approach is based on a new version of the Perov
Blouhi, Tayeb +2 more
core
In this paper, we study the uniqueness and existence of the solutions of four types of non-singular delay difference equations by using the Banach contraction principles, fixed point theory, and Gronwall’s inequality.
Sawitree Moonsuwan +5 more
semanticscholar +1 more source
ABSTRACT This paper proposes a novel extension of the classical cobweb price model by incorporating behavioral inventory responses through an anticipatory mini‐storage mechanism. In many real‐world commodity markets, persistent price oscillations occur even when classical stability conditions are theoretically satisfied, an inconsistency traditional ...
M. Anokye +6 more
wiley +1 more source

