Results 51 to 60 of about 3,007,544 (224)
In this research work, a class of multi-term fractional pantograph differential equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered.
Muhammad Bahar Ali Khan +5 more
doaj +1 more source
We study several stability properties on a finite or infinite interval of inhomogeneous linear neutral fractional systems with distributed delays and Caputo-type derivatives.
Hristo Kiskinov +3 more
doaj +1 more source
On the Orthogonal Stability of the Pexiderized Quadratic Equation
The Hyers--Ulam stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)+2h(y), x\perp y is established where \perp is a symmetric orthogonality in the sense of Ratz and f is odd.Comment: 10 pages, Latex; Changed ...
Aczél J. +12 more
core +2 more sources
The graphical abstract highlights our research on Sobolev Hilfer fractional Volterra‐Fredholm integro‐differential (SHFVFI) control problems for 1<ϱ<2$$ 1<\varrho <2 $$. We begin with the Hilfer fractional derivative (HFD) of order (1,2) in Sobolev type, which leads to Volterra‐Fredholm integro‐differential equations.
Marimuthu Mohan Raja +3 more
wiley +1 more source
Hyers–Ulam stability and hyperstability of a Jensen-type functional equation on 2-Banach spaces
The main aim of this paper is to establish the Hyers–Ulam stability and hyperstability of a Jensen-type quadratic mapping in 2-Banach spaces. That is, we prove the various types of Hyers–Ulam stability and hyperstability of the Jensen-type quadratic ...
Dr. Ponmana Selvan Arumugam, A. Najati
semanticscholar +1 more source
Smart malaria control using larvicidal plant extracts and mosquito nets. With the model, sensor nodes can be installed to collect environmental data that enhances the breeding of mosquitoes and the timing of malaria‐treated mosquito nets. Data collected can be processed using artificial intelligence for decision‐ and policy‐making.
Juliet Onyinye Nwigwe +6 more
wiley +1 more source
We discuss the existence and uniqueness of solutions for a Caputo-type fractional order boundary value problem equipped with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions on an arbitrary domain.
Bashir Ahmad +3 more
doaj +1 more source
Studies on Fractional Differential Equations With Functional Boundary Condition by Inverse Operators
ABSTRACT Fractional differential equations (FDEs) generalize classical integer‐order calculus to noninteger orders, enabling the modeling of complex phenomena that classical equations cannot fully capture. Their study has become essential across science, engineering, and mathematics due to their unique ability to describe systems with nonlocal ...
Chenkuan Li
wiley +1 more source
On stability for nonlinear implicit fractional differential equations
The purpose of this paper is to establish some types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit fractional-order ...
Mouffak Benchohra, Jamal E. Lazreg
doaj
On the stability of J$^*-$derivations
In this paper, we establish the stability and superstability of $J^*-$derivations in $J^*-$algebras for the generalized Jensen--type functional equation $$rf(\frac{x+y}{r})+rf(\frac{x-y}{r})= 2f(x).$$ Finally, we investigate the stability of $J ...
A. Ebadian +25 more
core +2 more sources

