Results 61 to 70 of about 6,477 (177)
In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized Ulam-Hyers-Rassias stability of the solution to an ...
Akbar Zada, Hira Waheed
doaj
In this paper, we consider a class of mixed type Hilfer fractional differential equations with noninstantaneous impulses, nonlocal conditions and time delay.
Baoyan Han, Bo Zhu
doaj +1 more source
Dog rabies remains a major public health concern in many regions, including Ulanga District, Morogoro, Tanzania. This study develops a fractional‐order compartmental model employing Caputo derivatives to incorporate memory effects, providing a more realistic representation of rabies transmission dynamics.
Jufren Zakayo Ndendya +3 more
wiley +1 more source
In this paper, we study the existence, uniqueness, and stability analysis of non-linear implicit neutral fractional differential equations involving the Atangana–Baleanu derivative in the Caputo sense. The Banach contraction principle theorem is employed
V. Sowbakiya +3 more
doaj +1 more source
Study of implicit delay fractional differential equations under anti-periodic boundary conditions
This research work is related to studying a class of special type delay implicit fractional order differential equations under anti-periodic boundary conditions.
Arshad Ali +2 more
doaj +1 more source
Rabies remains a significant public health concern, particularly in regions with high dog‐mediated transmission, and understanding its dynamics is crucial for effective control strategies. This study investigates the transmission dynamics of rabies by developing a deterministic human‐dog model extended to fractional‐order derivatives, incorporating ...
Jufren Zakayo Ndendya +4 more
wiley +1 more source
A type of Hyers–Ulam stability of the one-dimensional, time independent Schrödinger equation was recently investigated; the relevant system had a parabolic potential wall.
Ginkyu Choi, Soon-Mo Jung
doaj +1 more source
Fractional stochastic differential equations with memory effects are fundamental in modeling phenomena across physics, biology, and finance, where long‐range dependencies and random fluctuations coexist, yet their stability analysis under non‐Lipschitz conditions remains a significant challenge, particularly for systems involving Riemann–Liouville ...
Mohsen Alhassoun +2 more
wiley +1 more source
The coefficient multipliers on $ H^2 $ and $ \mathcal{D}^2 $ with Hyers–Ulam stability
In this paper, we investigated the Hyers–Ulam stability of the coefficient multipliers on the Hardy space $ H^2 $ and the Dirichlet space $ \mathcal{D}^2 $.
Chun Wang
doaj +1 more source
Modeling and Stability Analysis of Time‐Dependent Free‐Fall Motion in Random Environments
This paper examines the stability of a fractional‐order model that describes the free‐fall motion of a football in changing environmental conditions. Traditional models often overlook memory effects and nonlocal influences like air resistance, humidity, and turbulence.
Alireza Hatami +4 more
wiley +1 more source

