Results 81 to 90 of about 3,007,544 (224)
In this paper, we consider a class of mixed type Hilfer fractional differential equations with noninstantaneous impulses, nonlocal conditions and time delay.
Baoyan Han, Bo Zhu
doaj +1 more source
The main objective of this research involves studying a new novel coupled pantograph system with fractional operators together with nonlocal antiperiodic integral boundary conditions. The system consists of nonlinear pantograph fractional equations which integrate with Caputo fractional operators and Hadamard integrals.
Gunaseelan Mani +4 more
wiley +1 more source
Study of implicit delay fractional differential equations under anti-periodic boundary conditions
This research work is related to studying a class of special type delay implicit fractional order differential equations under anti-periodic boundary conditions.
Arshad Ali +2 more
doaj +1 more source
In this research paper, we introduce a general structure of a fractional boundary value problem in which a 2-term fractional differential equation has a fractional bi-order setting of Riemann–Liouville type.
Salim Ben Chikh +3 more
semanticscholar +1 more source
The present study investigates the controllability problems for higher‐order semilinear fractional differential systems (HOSLFDSs) with state and control delays in the context of the Caputo fractional derivative. Exploiting the invertibility of the Gramian matrix of fractional order, the necessary and sufficient conditions for the controllability ...
Anjapuli Panneer Selvam +4 more
wiley +1 more source
The coefficient multipliers on $ H^2 $ and $ \mathcal{D}^2 $ with Hyers–Ulam stability
In this paper, we investigated the Hyers–Ulam stability of the coefficient multipliers on the Hardy space $ H^2 $ and the Dirichlet space $ \mathcal{D}^2 $.
Chun Wang
doaj +1 more source
A type of Hyers–Ulam stability of the one-dimensional, time independent Schrödinger equation was recently investigated; the relevant system had a parabolic potential wall.
Ginkyu Choi, Soon-Mo Jung
doaj +1 more source
Solvability of Implicit Fractional Systems With Nonlocal Conditions in Weighted Functional Spaces
This paper investigates the existence and uniqueness of solutions for a class of nonlinear implicit Riemann–Liouville fractional integro‐differential equations subject to nonlocal conditions in a weighted Banach space. The inclusion of both implicit effects and nonlocal terms introduces additional complexity, making the analysis both challenging and ...
Abdulrahman A. Sharif +3 more
wiley +1 more source
In this paper, we study the existence, uniqueness, and stability analysis of non-linear implicit neutral fractional differential equations involving the Atangana–Baleanu derivative in the Caputo sense. The Banach contraction principle theorem is employed
V. Sowbakiya +3 more
doaj +1 more source
In this work, we study the existence and uniqueness of mild solutions for linear and semilinear control systems using the new deformable fractional derivative. The results have been obtained and presented using the deformable Laplace transform and its inverse, as well as the theory of semigroups and a rigorous application of Banach’s fixed‐point ...
Boulkhairy Sy +3 more
wiley +1 more source

