Results 41 to 50 of about 6,753 (236)

Hyers-Ulam-Rassias stability of some perturbed nonlinear second order ordinary differential equations

open access: yesProyecciones (Antofagasta), 2023
In this paper we investigate the Hyers-Ulam-Rassias stability of a perturbed nonlinear second order ordinary differential equation using Gronwall-Bellman-Bihari type integral inequalities.
I. Fakunle, P. Arawomo
semanticscholar   +1 more source

Stability of a functional equation deriving from cubic and quartic functions [PDF]

open access: yes, 2008
In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the cubic and quartic functional equation &4(f(3x+y)+f(3x-y))=-12(f(x+y)+f(x-y)) &+12(f(2x+y)+f(2x-y))-8f(y)-192f(x)+f(2y)+30f(2x)
Ebadian, A.   +2 more
core   +3 more sources

On Hyers–Ulam–Rassias Stability of the Pexider Equation

open access: yesJournal of Mathematical Analysis and Applications, 1999
Let \((G,+)\) be an abelian group, \((X,\|\cdot\|)\) be a Banach space and \(f,g,h:G\rightarrow X\) be mappings. An equation \(f(x+y)=g(x)+h(y)\) is called a Pexider functional equation. In the paper the stability of that equation in the spirit of Hyers-Ulam-Rassias is considered. The main theorem is the following: Let \(\varphi:G\times G\rightarrow[0,\
Jun, Kil-Woung   +2 more
openaire   +2 more sources

Existence and Ulam–Hyers stability for Caputo conformable differential equations with four-point integral conditions

open access: yesAdvances in Difference Equations, 2019
In this article, we investigate the existence and uniqueness of solutions for conformable derivatives in the Caputo setting with four-point integral conditions, applying standard fixed point theorems such as Banach contraction mapping principle ...
Aphirak Aphithana   +2 more
doaj   +1 more source

Hyers-Ulam-Rassias stability of generalized module left (m,n)-derivations [PDF]

open access: yes, 2013
The generalized Hyers-Ulam-Rassias stability of generalized module left ▫$(m,n)$▫-derivations on a normed algebra ▫$mathcal{A}$▫ into a Banach left ▫$mathcal{A}$▫-module is established.V članku je obravnavana Hyers-Ulam-Rassias stabilnost posplošenih ...
Fošner, Ajda
core   +1 more source

Hyers–Ulam–Rassias Stability of an Equation of Davison

open access: yesJournal of Mathematical Analysis and Applications, 1999
Let \(E_1\) be a normed algebra with a unit element, \(E_2\) be a Banach space and let \(f:E_1\rightarrow E_2\). In the paper the Hyers-Ulam-Rassias stability of the Davison functional equation \[ f(xy)+f(x+y)=f(xy+x)+f(y) \] is proved. As a consequence of the main theorem the authors obtain among others the following: Let \(\varepsilon\geq 0\) and \(p\
Jung, Soon-Mo, Sahoo, Prasanna K
openaire   +2 more sources

On existence and stability results to a class of boundary value problems under Mittag-Leffler power law

open access: yesAdvances in Difference Equations, 2020
Some essential conditions for existence theory and stability analysis to a class of boundary value problems of fractional delay differential equations involving Atangana–Baleanu-Caputo derivative are established. The deserted results are derived by using
Gauhar Ali   +5 more
doaj   +1 more source

Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions

open access: yesAIMS Mathematics, 2021
In this paper, we discuss the existence, uniqueness and stability of boundary value problems for $\psi$-Hilfer fractional integro-differential equations with mixed nonlocal (multi-point, fractional derivative multi-order and fractional integral ...
Weerawat Sudsutad   +2 more
doaj   +1 more source

Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative [PDF]

open access: yes, 2017
The purpose of this paper is to establish some types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit Hadamard fractional-order ...
BENCHOHRA, Mouffak, LAZREG, Jamal E.
core   +2 more sources

Semi-Hyers-Ulam-Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform

open access: yesSymmetry, 2021
In this paper, we investigate the semi-Hyers–Ulam–Rassias stability of a Volterra integro-differential equation of order I with a convolution type kernel. To this purpose the Laplace transform is used.
D. Inoan, D. Marian
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy