Results 61 to 70 of about 6,753 (236)
On the Generalized Hyers-Ulam-Rassias Stability of Higher Ring Derivations [PDF]
Let \({\mathcal A}\), \({\mathcal B}\) be real or complex algebras. A sequence \(H=\{h_0,h_1,\dots\}\) of additive operators from \({\mathcal A}\) to \({\mathcal B}\) is called a \textit{higher ring derivation} if \[ h_n(zw)=\sum_{i=0}^{n}h_i(z)h_{n-i}(w),\qquad z,w\in{\mathcal A}, n=0,1,\dots. \] A sequence \(F=\{f_0,f_1,\dots\}\) of operators from \({
Park, Kyoo-Hong, Jung, Yong-Soo
openaire +1 more source
Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method [PDF]
Using the fixed point method, we investigate the stability of the systems of quadratic-cubic and additive-quadratic-cubic functional equations with constant coefficients form r-divisible groups into Ŝerstnev probabilistic Banach ...
H. Majani +3 more
core +1 more source
Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations
Stability is the most relevant property of dynamical systems. The stability of stochastic differential equations is a challenging and still open problem. In this article, using a fuzzy Mittag–Leffler function, we introduce a new fuzzy controller function
R. Chaharpashlou +2 more
semanticscholar +1 more source
Satbility of Ternary Homomorphisms via Generalized Jensen Equation
In this paper, we establish the generalized Hyers--Ulam--Rassias stability of homomorphisms between ternary algebras associted to the generalized Jensen functional equation $r f(\frac{sx+ty}{r}) = s f(x) + t f(y)$.Comment: 12 ...
Moslehian, Mohammad Sal +1 more
core +2 more sources
Stability of generalized Newton difference equations
In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations Δn(p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam ...
Wang Zhihua, Shi Yong-Guo
doaj +1 more source
Study of implicit delay fractional differential equations under anti-periodic boundary conditions
This research work is related to studying a class of special type delay implicit fractional order differential equations under anti-periodic boundary conditions.
Arshad Ali +2 more
doaj +1 more source
In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional ...
Akbar Zada, Sartaj Ali, Yongjin Li
doaj +1 more source
β-Hyers-Ulam-Rassias Stability of Semilinear Nonautonomous Impulsive System
In this paper, we study a system governed by impulsive semilinear nonautonomous differential equations. We present the β –Ulam stability, β –Hyers–Ulam stability and β –Hyers–Ulam–Rassias stability for the said system on a compact interval and then ...
Xiaoming Wang, Muhammad Arif, A. Zada
semanticscholar +1 more source
Hyers–Ulam–Rassias stability of a linear recurrence
The author considers a linear recurrence \[ x_{n+1}=a_nx_n+b_n,\qquad n\geq 0,\;x_0\in X \] where \((x_n)\) is a sequence in a Banach space \(X\) and \((a_n)\), \((b_n)\) are given sequences of scalars and vectors in \(X\), respectively. Then, a stability result is proved: Suppose that \(\varepsilon>0\), \(| a| >1\) and an arbitrary sequence \((b_n ...
openaire +1 more source
In this paper, we discuss the existence and uniqueness of a solution for the implicit two-order fractional integro-differential equation with m-point boundary conditions by applying the Banach fixed point theorem.
Ilhem Nasrallah +2 more
doaj +1 more source

