Results 91 to 100 of about 11,444 (271)
Impact of Temperature Variability on the Caputo Fractional Malaria Model
This study aims to analyze the age related characteristics of malaria in human host by exploring Caputo fractional order models with temperature variability, that is looked into the combined effects of fractional order and temperature variability on malaria dynamics.
Dawit Kechine Menbiko+1 more
wiley +1 more source
In this paper, we study the semi-Hyers–Ulam–Rassias stability and the generalized semi-Hyers–Ulam–Rassias stability of some partial differential equations using Laplace transform. One of them is the convection partial differential equation.
Daniela Marian
doaj +1 more source
The main objective of this research involves studying a new novel coupled pantograph system with fractional operators together with nonlocal antiperiodic integral boundary conditions. The system consists of nonlinear pantograph fractional equations which integrate with Caputo fractional operators and Hadamard integrals.
Gunaseelan Mani+4 more
wiley +1 more source
In science and engineering, nonlinear time‐fractional partial differential equations (NTFPDEs) are thought to be a useful tool for describing several natural and physical processes. It is tough to come up with analytical answers for these issues. Finding answers to NTFPDEs is therefore a crucial component of scientific study.
Alemu Senbeta Bekela+2 more
wiley +1 more source
On stability for nonlinear implicit fractional differential equations
The purpose of this paper is to establish some types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit fractional-order ...
Mouffak Benchohra, Jamal E. Lazreg
doaj
In this research work, a class of multi-term fractional pantograph differential equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered.
Muhammad Bahar Ali Khan+5 more
doaj +1 more source
Estimation of Inexact Multimixed Additive‐Quadratic Mappings in Fuzzy Normed Spaces
In the current study, we introduce a new model of multimixed additive‐quadratic mapping and then show that the system of several mixed additive‐quadratic equations defining a multimixed additive‐quadratic mapping can be unified and presented as a single equation. We also show that such mappings under some conditions are multi‐additive, multi‐quadratic,
Abasalt Bodaghi, Pramita Mishra
wiley +1 more source
Hyers–Ulam Stability of a System of Hyperbolic Partial Differential Equations
In this paper, we study Hyers–Ulam and generalized Hyers–Ulam–Rassias stability of a system of hyperbolic partial differential equations using Gronwall’s lemma and Perov’s theorem.
Daniela Marian+2 more
doaj +1 more source
In this present work, we derive the solution of a quadratic functional equation and investigate the Ulam stability of this equation in Banach spaces using fixed point and direct techniques. Mainly, we examine the stability results in quasi‐β‐Banach spaces and quasi‐fuzzy β‐Banach spaces by means of direct method as well as quasi‐Banach spaces by means ...
Kandhasamy Tamilvanan+5 more
wiley +1 more source
In this paper, the authors investigate the Hyers–Ulam stability results of the quadratic functional equation in Banach spaces and non-Archimedean Banach spaces by utilizing two different techniques in terms of direct and fixed point techniques.
K. Tamilvanan+3 more
semanticscholar +1 more source