Results 111 to 120 of about 11,444 (271)
Hyers–Ulam–Rassias stability of fractional delay differential equations with Caputo derivative
This paper is devoted to the study of Hyers–Ulam–Rassias (HUR) stability of a nonlinear Caputo fractional delay differential equation (CFrDDE) with multiple variable time delays. We obtain two new theorems with regard to HUR stability of the CFrDDE on bounded and unbounded intervals. The method of the proofs is based on the fixed point approach.
Chaimaa Benzarouala, Cemil Tunç
wiley +1 more source
In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized Ulam-Hyers-Rassias stability of the solution to an ...
Akbar Zada, Hira Waheed
doaj
Hyers–Ulam stability and discrete dichotomy
Abstract Let m be a given positive integer and let A be an m × m complex matrix. We prove that the discrete system X n + 1 = A X n , n ∈ Z + is Hyers–Ulam stable if and only if the matrix A possesses a discrete dichotomy. Also we prove that the scalar difference equation of order m x n + m
Dorel Barbu+2 more
openaire +2 more sources
Some results on a nonlinear fractional equation with nonlocal boundary condition
The aim of this paper is to derive sufficient conditions for the existence, uniqueness, and Hyers–Ulam stability of solutions to a new nonlinear fractional integro‐differential equation with functional boundary conditions, using several fixed‐point theorems, the multivariate Mittag‐Leffler function and Babenko's approach.
Chenkuan Li+4 more
wiley +1 more source
In this article, we apply the Fourier transform to prove the Hyers-Ulam and Hyers-Ulam-Rassias stability for the first- and second-order nonlinear differential equations with initial conditions.
Selvam Arunachalam+2 more
doaj +1 more source
We study sequential fractional pantograph q-differential equations. We establish the uniqueness of solutions via Banach’s contraction mapping principle.
Mohamed Houas+3 more
doaj +1 more source
Hyers–Ulam Stability of Solution for Generalized Lie Bracket of Derivations
In this work, we present a new concept of additive‐Jensen s‐functional equations, where s is a constant complex number with |s| < 1, and solve them as two classes of additive functions. We then indicate that they are C‐linear mappings on Lie algebras. Following this, we define generalized Lie bracket derivations between Lie algebras.
Vahid Keshavarz+2 more
wiley +1 more source
Note on the solution of random differential equations via ψ-Hilfer fractional derivative
This manuscript is devoted to an investigation of the existence, uniqueness and stability of random differential equations with ψ-Hilfer fractional derivative.
S. Harikrishnan+3 more
doaj +1 more source
Study of Hybrid Problems under Exponential Type Fractional‐Order Derivatives
In this investigation, we develop a theory for the hybrid boundary value problem for fractional differential equations subject to three‐point boundary conditions, including the antiperiodic hybrid boundary condition. On suggested problems, the third‐order Caputo–Fabrizio derivative is the fractional operator applied.
Mohammed S. Abdo+4 more
wiley +1 more source
Stability in the Sense of Hyers–Ulam–Rassias for the Impulsive Volterra Equation
This article aims to use various fixed-point techniques to study the stability issue of the impulsive Volterra integral equation in the sense of Ulam–Hyers (sometimes known as Hyers–Ulam) and Hyers–Ulam–Rassias.
El-sayed El-hady+3 more
doaj +1 more source