Results 11 to 20 of about 6,391 (225)
In this paper, we investigate the existence and uniqueness of a solution for a class of ψ-Hilfer implicit fractional integro-differential equations with mixed nonlocal conditions.
Chatthai Thaiprayoon +2 more
doaj +1 more source
Hyers–Ulam stability of spherical functions [PDF]
Abstract In [15] we obtained the Hyers–Ulam stability of the functional equation ∫ K
Bouikhalene, Belaid +1 more
openaire +1 more source
Hyers–Ulam and Hyers–Ulam–Rassias Stability of First-Order Nonlinear Dynamic Equations
We present several new sufficient conditions for Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear dynamic equations for functions defined on a time scale with values in a Banach space.
Maryam A. Alghamdi +3 more
openaire +3 more sources
Условия Hyers—Ulam—Rassias-устойчивости семейств уравнений [PDF]
Для семейства регуляризованных уравнений и семейства уравнений с причинным оператором получены достаточные условия Hyers—Ulam—Rassias-устойчивости.Для сімейства регуляризованих рівнянь і сімейства рівнянь з причинним оператором отримано достатні умови ...
Мартынюк, А.А.
core +1 more source
Solutions to fractional differential equations is an emerging part of current research, since such equations appear in different applied fields. A study of existence, uniqueness, and stability of solutions to a coupled system of fractional differential ...
Danfeng Luo +3 more
doaj +1 more source
Hyers‐Ulam Stability of Power Series Equations [PDF]
We prove the Hyers‐Ulam stability of power series equation , whereanforn= 0, 1, 2, 3, … can be real or complex.
Bidkham, M. +2 more
openaire +4 more sources
In this article, we investigate the existence and uniqueness of solutions for conformable derivatives in the Caputo setting with four-point integral conditions, applying standard fixed point theorems such as Banach contraction mapping principle ...
Aphirak Aphithana +2 more
doaj +1 more source
Hyers--Ulam stability of a polynomial equation
The authors prove a Hyers-Ulam type stability result for the polynomial equation \(x^n + \alpha x + \beta = 0\). In particular, using Banach's contraction mapping theorem, they prove the following result: If \( |\alpha | > n\), \(|\beta | < |\alpha|-1\) and \(y \in [-1, 1]\) satisfies the inequality \[ |y^n + \alpha y + \beta | \leq \varepsilon \] for ...
Li, Yongjin, Hua, Liubin
openaire +2 more sources
Stability of a functional equation deriving from cubic and quartic functions [PDF]
In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the cubic and quartic functional equation &4(f(3x+y)+f(3x-y))=-12(f(x+y)+f(x-y)) &+12(f(2x+y)+f(2x-y))-8f(y)-192f(x)+f(2y)+30f(2x)
Ebadian, A. +2 more
core +3 more sources
Hyers–Ulam stability with respect to gauges
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Brzdęk, Janusz +2 more
openaire +1 more source

