Results 21 to 30 of about 104,225 (211)

A Generalized ML-Hyers-Ulam Stability of Quadratic Fractional Integral Equation

open access: yesNonlinear Engineering, 2021
An interesting quadratic fractional integral equation is investigated in this work via a generalized Mittag-Leffler (ML) function. The generalized ML–Hyers–Ulam stability is established in this investigation.
Kaabar Mohammed K. A.   +5 more
doaj   +1 more source

Ulam-Hyers stabilities of fractional functional differential equations

open access: yesAIMS Mathematics, 2020
From the first results on Ulam-Hyers stability, what has been noted is the exponential growth of the researchers dedicated to investigating Ulam-Hyers stability of fractional differential equation solutions whether they are functional, evolution ...
J. Vanterler da C. Sousa   +2 more
doaj   +1 more source

Practical Ulam-Hyers-Rassias stability for nonlinear equations [PDF]

open access: yesMathematica Bohemica, 2017
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets.
Jin Rong Wang, Michal Fečkan
doaj   +1 more source

Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions

open access: yesAIMS Mathematics, 2021
In this paper, we discuss the existence, uniqueness and stability of boundary value problems for $\psi$-Hilfer fractional integro-differential equations with mixed nonlocal (multi-point, fractional derivative multi-order and fractional integral ...
Weerawat Sudsutad   +2 more
doaj   +1 more source

Ulam-Type Stability for a Boundary-Value Problem for Multi-Term Delay Fractional Differential Equations of Caputo Type

open access: yesAxioms, 2022
A boundary-value problem for a couple of scalar nonlinear differential equations with a delay and several generalized proportional Caputo fractional derivatives is studied. Ulam-type stability of the given problem is investigated.
Ravi P. Agarwal, Snezhana Hristova
doaj   +1 more source

Ulam-Hyers stability of a parabolic partial differential equation

open access: yesDemonstratio Mathematica, 2019
The goal of this paper is to give an Ulam-Hyers stability result for a parabolic partial differential equation. Here we present two types of Ulam stability: Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability.
Marian Daniela   +2 more
doaj   +1 more source

Ulam–Hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary conditions

open access: yesAdvances in Difference Equations, 2020
This paper is concerned with a class of impulsive implicit fractional integrodifferential equations having the boundary value problem with mixed Riemann–Liouville fractional integral boundary conditions. We establish some existence and uniqueness results
Akbar Zada   +3 more
doaj   +1 more source

Existence and Stability of Implicit Fractional Differential Equations with Stieltjes Boundary Conditions Involving Hadamard Derivatives

open access: yesComplexity, 2021
In this article, we make analysis of the implicit fractional differential equations involving integral boundary conditions associated with Stieltjes integral and its corresponding coupled system. We use some sufficient conditions to achieve the existence
Danfeng Luo   +4 more
doaj   +1 more source

Stability Analysis of Nonlinear Time-Varying Systems by Lyapunov Functions with Indefinite Derivatives [PDF]

open access: yesIET Control Theory & Applications, 11(9): 1434-1442 (2017), 2015
This paper is concerned with stability analysis of nonlinear time-varying systems by using Lyapunov function based approach. The classical Lyapunov stability theorems are generalized in the sense that the time-derivative of the Lyapunov functions are allowed to be indefinite.
arxiv   +1 more source

An Application of Ulam-Hyers Stability in DC Motors [PDF]

open access: yes, 2014
In this paper, a generalization to nonlinear systems is proposed and applied to the motor dynamic, rotor model and stator model in DC motor equation.
Bodaghi, Abasalt, Pargali, Naser
core   +2 more sources

Home - About - Disclaimer - Privacy