Results 31 to 40 of about 6,391 (225)
This paper is concerned with a class of impulsive implicit fractional integrodifferential equations having the boundary value problem with mixed Riemann–Liouville fractional integral boundary conditions. We establish some existence and uniqueness results
Akbar Zada +3 more
doaj +1 more source
In this article, we make analysis of the implicit fractional differential equations involving integral boundary conditions associated with Stieltjes integral and its corresponding coupled system. We use some sufficient conditions to achieve the existence
Danfeng Luo +4 more
doaj +1 more source
A boundary-value problem for a couple of scalar nonlinear differential equations with a delay and several generalized proportional Caputo fractional derivatives is studied. Ulam-type stability of the given problem is investigated.
Ravi P. Agarwal, Snezhana Hristova
doaj +1 more source
Hyers–Ulam stability and discrete dichotomy
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Dorel Barbu +2 more
openaire +2 more sources
Ulam-Hyers stability of a parabolic partial differential equation
The goal of this paper is to give an Ulam-Hyers stability result for a parabolic partial differential equation. Here we present two types of Ulam stability: Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability.
Marian Daniela +2 more
doaj +1 more source
Ulam-Hyers stabilities of fractional functional differential equations
From the first results on Ulam-Hyers stability, what has been noted is the exponential growth of the researchers dedicated to investigating Ulam-Hyers stability of fractional differential equation solutions whether they are functional, evolution ...
J. Vanterler da C. Sousa +2 more
doaj +1 more source
Hyers-Ulam-Rassias stability of generalized module left (m,n)-derivations [PDF]
The generalized Hyers-Ulam-Rassias stability of generalized module left ▫$(m,n)$▫-derivations on a normed algebra ▫$mathcal{A}$▫ into a Banach left ▫$mathcal{A}$▫-module is established.V članku je obravnavana Hyers-Ulam-Rassias stabilnost posplošenih ...
Fošner, Ajda
core +1 more source
The Hyers–Ulam stability of nonlinear recurrences
In the paper of \textit{D. Popa} [J. Math. Anal. Appl. 309, No. 2, 591--597 (2005; Zbl 1079.39027)] the Hyers-Ulam stability problem was proved for linear recurrences in a Banach space. In the paper under review, the authors investigate this problem for nonlinear recurrences in a metric space \((X, d)\). More precisely, they show that if \(\{x_n\}\), \(
Brzdȩk, Janusz, Popa, Dorian, Xu, Bing
openaire +1 more source
In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional ...
Akbar Zada, Sartaj Ali, Yongjin Li
doaj +1 more source
Practical Ulam-Hyers-Rassias stability for nonlinear equations [PDF]
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets.
Jin Rong Wang, Michal Fečkan
doaj +1 more source

