Results 41 to 50 of about 107,297 (248)

Stability Analysis of Nonlinear Time-Varying Systems by Lyapunov Functions with Indefinite Derivatives [PDF]

open access: yesIET Control Theory & Applications, 11(9): 1434-1442 (2017), 2015
This paper is concerned with stability analysis of nonlinear time-varying systems by using Lyapunov function based approach. The classical Lyapunov stability theorems are generalized in the sense that the time-derivative of the Lyapunov functions are allowed to be indefinite.
arxiv   +1 more source

Existence and Stability of Implicit Fractional Differential Equations with Stieltjes Boundary Conditions Involving Hadamard Derivatives

open access: yesComplexity, 2021
In this article, we make analysis of the implicit fractional differential equations involving integral boundary conditions associated with Stieltjes integral and its corresponding coupled system. We use some sufficient conditions to achieve the existence
Danfeng Luo   +4 more
doaj   +1 more source

Hyers–Ulam stability for a partial difference equation [PDF]

open access: yesElectronic Journal of Qualitative Theory of Differential Equations, 2021
Under the exponential trichotomy condition we study the Hyers–Ulam stability for the linear partial difference equation: \[ x_{n+1,m}=A_nx_{n,m}+B_{n,m}x_{n,m+1}+f(x_{n,m}),\qquad n,m\in \mathbb{Z} \] where $A_n$ is a $k\times k$ matrix whose elements are sequences of $n$, $B_{n,m}$ is a $k\times k$ matrix whose elements are double sequences of $m,n ...
Konstantinos Konstantinidis   +2 more
openaire   +3 more sources

Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions

open access: yesAIMS Mathematics, 2021
In this paper, we discuss the existence, uniqueness and stability of boundary value problems for $\psi$-Hilfer fractional integro-differential equations with mixed nonlocal (multi-point, fractional derivative multi-order and fractional integral ...
Weerawat Sudsutad   +2 more
doaj   +1 more source

Efficiency and Stability in a Process of Teams Formation [PDF]

open access: yes, 2021
Motivated by data on coauthorships in scientific publications, we analyze a team formation process that generalizes matching models and network formation models, allowing for overlapping teams of heterogeneous size. We apply different notions of stability: myopic team-wise stability, which extends to our setup the concept of pair-wise stability ...
arxiv   +1 more source

Asymptotic stability of the Cauchy and Jensen functional equations [PDF]

open access: yes, 2016
The aim of this note is to investigate the asymptotic stability behaviour of the Cauchy and Jensen functional equations. Our main results show that if these equations hold for large arguments with small error, then they are also valid everywhere with a ...
A. Bahyrycz   +19 more
core   +2 more sources

The Hyers–Ulam stability of nonlinear recurrences

open access: yesJournal of Mathematical Analysis and Applications, 2007
We show some Hyers–Ulam type stability results for some nonlinear recurrences in metric spaces.
Janusz Brzdęk, Dorian Popa, Bing Xu
openaire   +2 more sources

Ulam-Type Stability for a Boundary-Value Problem for Multi-Term Delay Fractional Differential Equations of Caputo Type

open access: yesAxioms, 2022
A boundary-value problem for a couple of scalar nonlinear differential equations with a delay and several generalized proportional Caputo fractional derivatives is studied. Ulam-type stability of the given problem is investigated.
Ravi P. Agarwal, Snezhana Hristova
doaj   +1 more source

Impulsive Coupled System of Fractional Differential Equations with Caputo–Katugampola Fuzzy Fractional Derivative

open access: yesJournal of Mathematics, 2021
In this article, we investigate the existence, uniqueness, and different kinds of Ulam–Hyers stability of solutions of an impulsive coupled system of fractional differential equations by using the Caputo–Katugampola fuzzy fractional derivative.
Leila Sajedi   +2 more
doaj   +1 more source

On Generalized Hyers‐Ulam Stability of Admissible Functions [PDF]

open access: yesAbstract and Applied Analysis, 2012
We consider the Hyers‐Ulam stability for the following fractional differential equations in sense of Srivastava‐Owa fractional operators (derivative and integral) defined in the unit disk: , in a complex Banach space. Furthermore, a generalization of the admissible functions in complex Banach spaces is imposed, and applications are illustrated.
openaire   +4 more sources

Home - About - Disclaimer - Privacy