Results 51 to 60 of about 6,522 (226)
Abstract We study a nonlinear ψ−$$ \psi - $$ Hilfer fractional‐order delay integro‐differential equation ( ψ−$$ \psi - $$ Hilfer FrODIDE) that incorporates N−$$ N- $$ multiple variable time delays. Utilizing the ψ−$$ \psi - $$ Hilfer fractional derivative ( ψ−$$ \psi - $$ Hilfer‐FrD), we investigate the Ulam–Hyers––Rassias (U–H–R), semi‐Ulam–Hyers ...
Cemil Tunç, Osman Tunç
wiley +1 more source
The Hyers–Ulam stability of nonlinear recurrences
In the paper of \textit{D. Popa} [J. Math. Anal. Appl. 309, No. 2, 591--597 (2005; Zbl 1079.39027)] the Hyers-Ulam stability problem was proved for linear recurrences in a Banach space. In the paper under review, the authors investigate this problem for nonlinear recurrences in a metric space \((X, d)\). More precisely, they show that if \(\{x_n\}\), \(
Brzdȩk, Janusz, Popa, Dorian, Xu, Bing
openaire +1 more source
Hyers-Ulam and Hyers-Ulam-Rassias Stability for a Class of Integro-Differential Equations [PDF]
We analyse different kinds of stabilities for a class of very general nonlinear integro-differential equations of Volterra type within appropriate metric spaces. Sufficient conditions are obtained in view to guarantee Hyers-Ulam stability and Hyers-Ulam-Rassias stability for such a class of integro-differential equations. We will consider the different
Castro, L. P., Simões, A. M.
openaire +4 more sources
In this research work, a class of multi-term fractional pantograph differential equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered.
Muhammad Bahar Ali Khan +5 more
doaj +1 more source
We study several stability properties on a finite or infinite interval of inhomogeneous linear neutral fractional systems with distributed delays and Caputo-type derivatives.
Hristo Kiskinov +3 more
doaj +1 more source
On the Orthogonal Stability of the Pexiderized Quadratic Equation
The Hyers--Ulam stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)+2h(y), x\perp y is established where \perp is a symmetric orthogonality in the sense of Ratz and f is odd.Comment: 10 pages, Latex; Changed ...
Aczél J. +12 more
core +2 more sources
This paper presents a comprehensive analysis of the existence, uniqueness, and Ulam–Hyers stability of solutions for a class of Cauchy‐type nonlinear fractional differential equations with variable order and finite delay. The motivation for this study lies in the increasing importance of variable‐order fractional calculus in modeling real‐world systems
Souhila Sabit +5 more
wiley +1 more source
Generalized Hyers-Ulam Stability of Trigonometric Functional Equations [PDF]
In the present paper we study the generalized Hyers–Ulam stability of the generalized trigonometric functional equations f ( x y ) + μ ( y ) f ( x σ ( y ) ) = 2 f ( x ) g ( y ) + 2 h ( y ) , x , y ∈ S ; f ( x y ) + μ ( y ) f ( x σ ( y ) ) = 2 f ( y ) g ( x ) + 2 h ( x ) , x , y ∈ S , where S is a semigroup, σ : S ⟶ S is a ...
Elqorachi, Elhoucien +1 more
openaire +2 more sources
Stability of Partial Differential Equations by Mahgoub Transform Method
The stability theory is an important research area in the qualitative analysis of partial differential equations. The Hyers-Ulam stability for a partial differential equation has a very close exact solution to the approximate solution of the differential
Harun Biçer
doaj +1 more source
This study introduces a novel fractal–fractional extension of the Hodgkin–Huxley model to capture complex neuronal dynamics, with particular focus on intrinsically bursting patterns. The key innovation lies in the simultaneous incorporation of Caputo–Fabrizio operators with fractional order α for memory effects and fractal dimension τ for temporal ...
M. J. Islam +4 more
wiley +1 more source

