Results 61 to 70 of about 6,391 (225)
We discuss the existence and uniqueness of solutions for a Caputo-type fractional order boundary value problem equipped with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions on an arbitrary domain.
Bashir Ahmad +3 more
doaj +1 more source
Studies on Fractional Differential Equations With Functional Boundary Condition by Inverse Operators
ABSTRACT Fractional differential equations (FDEs) generalize classical integer‐order calculus to noninteger orders, enabling the modeling of complex phenomena that classical equations cannot fully capture. Their study has become essential across science, engineering, and mathematics due to their unique ability to describe systems with nonlocal ...
Chenkuan Li
wiley +1 more source
On stability for nonlinear implicit fractional differential equations
The purpose of this paper is to establish some types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit fractional-order ...
Mouffak Benchohra, Jamal E. Lazreg
doaj
On the stability of J$^*-$derivations
In this paper, we establish the stability and superstability of $J^*-$derivations in $J^*-$algebras for the generalized Jensen--type functional equation $$rf(\frac{x+y}{r})+rf(\frac{x-y}{r})= 2f(x).$$ Finally, we investigate the stability of $J ...
A. Ebadian +25 more
core +2 more sources
ON HYERS-ULAM STABILITY OF THE PEXIDER EQUATION
The following result is proved. Theorem: Let \((S,+)\) be a commutative semigroup and let \(X\) be a~sequentially complete linear topological Hausdorff space. Assume that \(V\) is a sequentially closed, bounded, convex and symmetric with respect to zero subset of \(X\).
openaire +4 more sources
On a modified Hyers‐Ulam stability of homogeneous equation [PDF]
In this paper, a generalized Hyers‐Ulam stability of the homogeneous equation shall be proved, i.e., if a mapping f satisfies the functional inequality ‖f(yx) − ykf(x)‖ ≤ φ(x, y) under suitable conditions, there exists a unique mapping T satisfying T(yx) = ytT(x) and ‖T(x) − f(x)‖ ≤ Φ(x).
openaire +2 more sources
The Impact of Memory Effects on Lymphatic Filariasis Transmission Using Incidence Data From Ghana
Modeling Lymphatic Filariasis by incorporating disease awareness through fractional derivative operators. ABSTRACT Lymphatic filariasis is a neglected tropical disease caused by a parasitic worm transmitted to humans by a mosquito bite. In this study, a mathematical model is developed using the Caputo fractional operator.
Fredrick A. Wireko +5 more
wiley +1 more source
Hyers–Ulam stability for a partial difference equation
Summary: Under the exponential trichotomy condition we study the Hyers-Ulam stability for the linear partial difference equation: \[ x_{n+1,m}=A_nx_{n,m}+B_{n,m}x_{n,m+1}+f(x_{n,m}),\qquad n,m\in \mathbb{Z} \] where \(A_n\) is a \(k\times k\) matrix whose elements are sequences of \(n\), \(B_{n,m}\) is a \(k\times k\) matrix whose elements are double ...
Konstantinos Konstantinidis +2 more
openaire +4 more sources
Modeling the Impact of Double‐Dose Vaccination and Saturated Transmission Dynamics on Mpox Control
The dynamics of the monkeypox disease in the population. ABSTRACT This study constructs a compartmental model that incorporates the dynamics of implementing a double‐dose vaccination for the Mpox disease. The study further explores the pattern of saturated transmission dynamics of the Mpox disease.
Fredrick Asenso Wireko +5 more
wiley +1 more source
Hyers-Ulam and Hyers-Ulam-Rassias stability of a class of Hammerstein integral equations [PDF]
The purpose of this paper is to study different kinds of stability for a class of Hammerstein integral equations. Sufficient conditions are derived in view to obtain Hyers-Ulam stability and Hyers-Ulam-Rassias stability for such a class of Hammerstein integral equations.
Simões, A. M., Castro, L. P.
openaire +4 more sources

