Results 71 to 80 of about 11,444 (271)

Hyers-Ulam stability of elliptic M\"obius difference equation

open access: yes, 2017
The linear fractional map $ f(z) = \frac{az+ b}{cz + d} $ on the Riemann sphere with complex coefficients $ ad-bc \neq 0 $ is called M\"obius map.
Nam, Young Woo
core   +1 more source

ON HYERS-ULAM STABILITY OF THE PEXIDER EQUATION

open access: yesDemonstratio Mathematica, 2004
The following result is proved. Theorem: Let \((S,+)\) be a commutative semigroup and let \(X\) be a~sequentially complete linear topological Hausdorff space. Assume that \(V\) is a sequentially closed, bounded, convex and symmetric with respect to zero subset of \(X\).
openaire   +5 more sources

Spectral characterizations for Hyers-Ulam stability

open access: yesElectronic Journal of Qualitative Theory of Differential Equations, 2014
First we prove that an $n\times n$ complex linear system is Hyers-Ulam stable if and only if it is dichotomic (i.e. its associated matrix has no eigenvalues on the imaginary axis $i\mathbb{R}$). Also we show that the scalar differential equation of order $n,$ \[\begin{split} x^{(n)}(t)=a_1x^{(n-1)}(t)+\ldots+a_{n-1}{x}'(t)+a_nx(t),\quad t\in\mathbb{R}_+
Buse, C.   +2 more
openaire   +3 more sources

Stability of Partial Differential Equations by Mahgoub Transform Method

open access: yesSakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2022
The stability theory is an important research area in the qualitative analysis of partial differential equations. The Hyers-Ulam stability for a partial differential equation has a very close exact solution to the approximate solution of the differential
Harun Biçer
doaj   +1 more source

Satbility of Ternary Homomorphisms via Generalized Jensen Equation

open access: yes, 2005
In this paper, we establish the generalized Hyers--Ulam--Rassias stability of homomorphisms between ternary algebras associted to the generalized Jensen functional equation $r f(\frac{sx+ty}{r}) = s f(x) + t f(y)$.Comment: 12 ...
Moslehian, Mohammad Sal   +1 more
core   +2 more sources

On the Hyers-Ulam Stability of ψ-Additive Mappings

open access: yesJournal of Approximation Theory, 1993
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Themistocles M. Rassias, George Isac
openaire   +2 more sources

Hyers–Ulam stability of spherical functions [PDF]

open access: yesGeorgian Mathematical Journal, 2016
Abstract In [15] we obtained the Hyers–Ulam stability of the functional equation ∫ K
Elhoucien Eloqrachi, Belaid Bouikhalene
openaire   +2 more sources

Perturbation of One-Dimensional Time-Independent Schrödinger Equation with a Near-Hyperbolic Potential

open access: yesAxioms, 2022
The authors have recently investigated a type of Hyers–Ulam stability of one-dimensional time-independent Schrödinger equation with a symmetric parabolic potential wall.
Byungbae Kim, Soon-Mo Jung
doaj   +1 more source

Studies on Fractional Differential Equations With Functional Boundary Condition by Inverse Operators

open access: yesMathematical Methods in the Applied Sciences, Volume 48, Issue 11, Page 11161-11170, 30 July 2025.
ABSTRACT Fractional differential equations (FDEs) generalize classical integer‐order calculus to noninteger orders, enabling the modeling of complex phenomena that classical equations cannot fully capture. Their study has become essential across science, engineering, and mathematics due to their unique ability to describe systems with nonlocal ...
Chenkuan Li
wiley   +1 more source

Hyers–Ulam–Rassias Stability of an Equation of Davison

open access: yesJournal of Mathematical Analysis and Applications, 1999
Let \(E_1\) be a normed algebra with a unit element, \(E_2\) be a Banach space and let \(f:E_1\rightarrow E_2\). In the paper the Hyers-Ulam-Rassias stability of the Davison functional equation \[ f(xy)+f(x+y)=f(xy+x)+f(y) \] is proved. As a consequence of the main theorem the authors obtain among others the following: Let \(\varepsilon\geq 0\) and \(p\
Prasanna K. Sahoo, Soon-Mo Jung
openaire   +3 more sources

Home - About - Disclaimer - Privacy