Results 81 to 90 of about 11,444 (271)

The Impact of Memory Effects on Lymphatic Filariasis Transmission Using Incidence Data From Ghana

open access: yesEngineering Reports, Volume 7, Issue 7, July 2025.
Modeling Lymphatic Filariasis by incorporating disease awareness through fractional derivative operators. ABSTRACT Lymphatic filariasis is a neglected tropical disease caused by a parasitic worm transmitted to humans by a mosquito bite. In this study, a mathematical model is developed using the Caputo fractional operator.
Fredrick A. Wireko   +5 more
wiley   +1 more source

Four Different Ulam-Type Stability for Implicit Second-Order Fractional Integro-Differential Equation with M-Point Boundary Conditions

open access: yesMathematics
In this paper, we discuss the existence and uniqueness of a solution for the implicit two-order fractional integro-differential equation with m-point boundary conditions by applying the Banach fixed point theorem.
Ilhem Nasrallah   +2 more
doaj   +1 more source

Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems [PDF]

open access: yes, 2019
In this paper, we prove some existence, uniqueness and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random operators on separable complete metric spaces. The approach is based on a new version of the Perov
Blouhi, Tayeb   +2 more
core  

Approximate Homomorphisms of Ternary Semigroups

open access: yes, 2005
A mapping $f:(G_1,[ ]_1)\to (G_2,[ ]_2)$ between ternary semigroups will be called a ternary homomorphism if $f([xyz]_1)=[f(x)f(y)f(z)]_2$. In this paper, we prove the generalized Hyers--Ulam--Rassias stability of mappings of commutative semigroups into ...
A. Cayley   +22 more
core   +2 more sources

Hyers–Ulam stability with respect to gauges

open access: yesJournal of Mathematical Analysis and Applications, 2017
Abstract We suggest a somewhat new approach to the issue of Hyers–Ulam stability. Namely, let A, B be (real or complex) linear spaces, L : A → B be a linear operator, N : = k e r L , and ρ A and ρ B be semigauges on A and B, respectively. We say that L is HU-stable with constant K ≥ 0 if for each
Janusz Brzdęk, Ioan Raşa, Dorian Popa
openaire   +2 more sources

Modeling the Impact of Double‐Dose Vaccination and Saturated Transmission Dynamics on Mpox Control

open access: yesEngineering Reports, Volume 7, Issue 5, May 2025.
The dynamics of the monkeypox disease in the population. ABSTRACT This study constructs a compartmental model that incorporates the dynamics of implementing a double‐dose vaccination for the Mpox disease. The study further explores the pattern of saturated transmission dynamics of the Mpox disease.
Fredrick Asenso Wireko   +5 more
wiley   +1 more source

On the Orthogonal Stability of the Pexiderized Quadratic Equation

open access: yes, 2005
The Hyers--Ulam stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)+2h(y), x\perp y is established where \perp is a symmetric orthogonality in the sense of Ratz and f is odd.Comment: 10 pages, Latex; Changed ...
Aczél J.   +12 more
core   +2 more sources

Hyers–Ulam stability of zeros of polynomials

open access: yesApplied Mathematics Letters, 2011
AbstractWe prove that if |a1| is large and |a0| is small enough, then every approximate zero of the polynomial of degree n, anzn+an−1zn−1+⋯+a1z+a0=0, can be approximated by a true zero within a good error bound.
openaire   +2 more sources

On Hyers–Ulam–Rassias Stability of the Pexider Equation

open access: yesJournal of Mathematical Analysis and Applications, 1999
Let \((G,+)\) be an abelian group, \((X,\|\cdot\|)\) be a Banach space and \(f,g,h:G\rightarrow X\) be mappings. An equation \(f(x+y)=g(x)+h(y)\) is called a Pexider functional equation. In the paper the stability of that equation in the spirit of Hyers-Ulam-Rassias is considered. The main theorem is the following: Let \(\varphi:G\times G\rightarrow[0,\
Dong-Soo Shin   +2 more
openaire   +3 more sources

On proportional hybrid operators in the discrete setting

open access: yesMathematical Methods in the Applied Sciences, Volume 48, Issue 4, Page 4344-4364, 15 March 2025.
In this article, we introduce a new nonlocal operator Hα$$ {H}^{\alpha } $$ defined as a linear combination of the discrete fractional Caputo operator and the fractional sum operator. A new dual operator Rα$$ {R}^{\alpha } $$ is also introduced by replacing the discrete fractional Caputo operator with the discrete fractional Riemann ...
Carlos Lizama, Marina Murillo‐Arcila
wiley   +1 more source

Home - About - Disclaimer - Privacy