Results 91 to 100 of about 41,720 (280)
One dimensional hyperbolic systems of conservation laws [PDF]
These notes are meant to provide a survey of some recent results and techniques in the theory of conservation laws. In one space dimension, a system of conservation laws can be written as ut + f(u) x = 0. Here u = (u1, ... , un) is the vector of conserved quantities while the components of f = (f1, ... , fn) are called the fluxes.
openaire +2 more sources
ABSTRACT As the literature on workplace mistreatment has grown, so too have the number of constructs proposed to represent distinctive forms of mistreatment. However, considerable disagreement exists surrounding whether these proposed constructs represent unique manifestations of workplace mistreatment or represent a single underlying phenomenon.
Lindsay Y. Dhanani, Sean M. Bogart
wiley +1 more source
Interaction of Dirac δ$$ \delta $$‐Waves in the Inviscid Levine and Sleeman Chemotaxis Model
ABSTRACT This article investigates interactions of δ$$ \delta $$‐shock waves in the inviscid Levine and Sleeman chemotaxis model ut−λ(uv)x=0$$ {u}_t-\lambda {(uv)}_x=0 $$, vt−ux=0$$ {v}_t-{u}_x=0 $$. The analysis employs a distributional product and a solution concept that extends the classical solution concept.
Adelino Paiva
wiley +1 more source
Delta Shock Wave for the Suliciu Relaxation System
We study the one-dimensional Riemann problem for a hyperbolic system of three conservation laws of Temple class. This system is a simplification of a recently proposed system of five conservations laws by Bouchut and Boyaval that model viscoelastic ...
Richard De la cruz +3 more
doaj +1 more source
The von Neumann Stability Analysis of the Fixed‐Stress Schemes in Poroelastodynamics
ABSTRACT We investigate splitting schemes based on the fixed‐stress sequential approach for poroelastodynamic problems. To assess numerical stability, we perform the von Neumann stability analysis on several fixed‐stress schemes for poroelastodynamics, including staggered, stabilized, and iterative methods. Our analysis reveals that while the staggered
Jihoon Kim +2 more
wiley +1 more source
Modeling and analysis of pooled stepped chutes
We consider a mathematical model describing pooled stepped chutes where the transport in each pooled step is described by the shallow-water equations. Such systems can be found for example at large dams in order to release overflowing water.
Graziano Guerra +2 more
doaj +1 more source
Understanding the ecological implications of species coexistence is central to biodiversity studies and to identify environmental and anthropogenic drivers of ecosystem dynamics, where ecological network analysis offers valuable insights. This study examines the complexity, structure, and potential responses to disturbances of the Strait of Magellan's ...
Claudia D. Andrade +4 more
wiley +1 more source
Abstract Overexploitation of wildlife is pervasive in many tropical regions, and in addition to being a significant conservation and sustainability concern, it has received global attention given discussions over the origins of zoonotic disease outbreaks.
Franklin T. Simo +8 more
wiley +1 more source
Weak asymptotic solution for a non-strictly hyperbolic system of conservation laws
In this article, we construct the weak asymptotic solution developed by Panov and Shelkovich for piecewise known solutions to a prolonged system of conservation laws.
Harendra Singh +2 more
doaj
High resolution schemes for hyperbolic conservation laws [PDF]
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function.
openaire +1 more source

