Results 171 to 180 of about 109,092 (251)

Analysis of Multiscale Condensation Phenomena Using a Zero‐Shot Computer Vision Framework

open access: yesAdvanced Science, EarlyView.
A zero‐shot computer vision framework quantifies multiscale condensation dynamics by automatically segmenting droplets and extracting physical parameters without labeled data. The workflow integrates data mining and statistical analysis to reveal droplet growth, coalescence statistics, and sweeping behaviors, enabling label‐free measurement of heat ...
Donghyeong Lee   +5 more
wiley   +1 more source

A Scalable Framework for Comprehensive Typing of Polymorphic Immune Genes from Long‐Read Data

open access: yesAdvanced Science, EarlyView.
SpecImmune introduces a unified computational framework optimized for long‐read sequencing to resolve over 400 highly polymorphic immune genes. This scalable approach achieves high‐resolution typing, enabling the discovery of cross‐family co‐evolutionary networks and population‐specific diversity.
Shuai Wang   +5 more
wiley   +1 more source

High‐Conductivity Electrolytes Screened Using Fragment‐ and Composition‐Aware Deep Learning

open access: yesAdvanced Science, EarlyView.
We present a new deep learning framework that hierarchically links molecular and functional unit attributions to predict electrolyte conductivity. By integrating molecular composition, ratios, and physicochemical descriptors, it achieves accurate, interpretable predictions and large‐scale virtual screening, offering chemically meaningful insights for ...
Xiangwen Wang   +6 more
wiley   +1 more source

Hyperparameter optimization of XGBoost and hybrid CnnSVM for cyber threat detection using modified Harris hawks algorithm. [PDF]

open access: yesPeerJ Comput Sci
Elwahsh H   +7 more
europepmc   +1 more source

In Situ Quantization with Memory‐Transistor Transfer Unit Based on Electrochemical Random‐Access Memory for Edge Applications

open access: yesAdvanced Science, EarlyView.
By combining ionic nonvolatile memories and transistors, this work proposes a compact synaptic unit to enable low‐precision neural network training. The design supports in situ weight quantization without extra programming and achieves accuracy comparable to ideal methods. This work obtains energy consumption advantage of 25.51× (ECRAM) and 4.84× (RRAM)
Zhen Yang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy