Results 61 to 70 of about 109,092 (251)
This review highlights how machine learning (ML) algorithms are employed to enhance sensor performance, focusing on gas and physical sensors such as haptic and strain devices. By addressing current bottlenecks and enabling simultaneous improvement of multiple metrics, these approaches pave the way toward next‐generation, real‐world sensor applications.
Kichul Lee +17 more
wiley +1 more source
This study establishes a materials‐driven framework for entropy generation within standard CMOS technology. By electrically rebalancing gate‐oxide traps and Si‐channel defects in foundry‐fabricated FDSOI transistors, the work realizes in‐materia control of temporal correlation – achieving task adaptive entropy optimization for reinforcement learning ...
Been Kwak +14 more
wiley +1 more source
An epi‐intraneural interface is developed through in silico optimization and a novel tridimensional microfabrication pipeline. The device integrates penetrating and epineural contacts on a flexible substrate. Mechanical, electrochemical, and in vivo testing in rat and pig reveal robust implantation, low‐threshold activation, and site‐dependent ...
Federico Ciotti +14 more
wiley +1 more source
Predicting Atomic Charges in MOFs by Topological Charge Equilibration
An atomic charge prediction method is presented that is able to accurately reproduce ab‐initio‐derived reference charges for a large number of metal–organic frameworks. Based on a topological charge equilibration scheme, static charges that fulfill overall neutrality are quickly generated.
Babak Farhadi Jahromi +2 more
wiley +1 more source
Fairness-Aware Hyperparameter Optimization
In recent years, increased usage of machine learning algorithms has been accompanied by several reports of machine bias in areas from recidivism assessment, to job-applicant screening tools, and estimating mortgage default risk. Additionally, recent advances in machine learning have prominently featured so-called "black-box" models (e.g.
openaire +2 more sources
Adaptive Optimizer for Automated Hyperparameter Optimization Problem
The choices of hyperparameters have critical effects on the performance of machine learning models. In this paper, we present a general framework that is able to construct an adaptive optimizer, which automatically adjust the appropriate algorithm and parameters in the process of optimization.
openaire +2 more sources
Antimicrobial peptide (AMP)‐loaded nanocarriers provide a multifunctional strategy to combat drug‐resistant Mycobacterium tuberculosis. By enhancing intracellular delivery, bypassing efflux pumps, and disrupting bacterial membranes, this platform restores phagolysosome fusion and macrophage function.
Christian S. Carnero Canales +11 more
wiley +1 more source
In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives ...
Balraj Preet Kaur +5 more
doaj +1 more source
Effective identification of strain-hardening parameters is essential for predictive plasticity models used in automotive applications. However, the performance of Bayesian optimization depends strongly on kernel hyperparameters in the Gaussian-process ...
Teng Long +3 more
doaj +1 more source
A compact handheld GelSight probe reconstructs in vivo 3‐D skin topography with micron‐level precision using a custom elastic gel and a learning‐based surface normal to height map pipeline. The device quantifies wrinkle depth across various body locations and detects changes in wrinkle depth following moisturizer application.
Akhil Padmanabha +12 more
wiley +1 more source

