Results 131 to 140 of about 127,719 (261)
Using machine‐learning analyses in two independent multiple sclerosis cohorts, spinal cord atrophy and cortical degeneration emerged as key predictors of disability and progression independent of relapses. Deep gray matter damage further improved prediction, while serum biomarkers of brain damage provided complementary information, highlighting the ...
Alessandro Cagol +17 more
wiley +1 more source
AOA-guided hyperparameter refinement for precise medical image segmentation
Medical image segmentation faces significant challenges, including the need for extensive annotated data, the impact of hyperparameters, and the limitations of traditional CNN models.
Hossam Magdy Balaha +6 more
doaj +1 more source
Multiomic profiling of HER2‐low breast cancer identifies three proteomic subtypes with distinct therapeutic strategies: endocrine, antiangiogenic, and anti‐HER2 therapies. Genomic and lactate modification landscapes are detailed, providing insights for precise management.
Shouping Xu +20 more
wiley +1 more source
This study introduces DualPG‐DTA, a framework integrating two pre‐trained models to generate molecular and protein representations. It constructs dual graphs processed by specialized neural networks with dynamic attention for feature fusion, achieving superior benchmark performance.
Yihao Chen +7 more
wiley +1 more source
Hyperparameter Optimization in Machine Learning
Hyperparameters are configuration variables controlling the behavior of machine learning algorithms. They are ubiquitous in machine learning and artificial intelligence and the choice of their values determines the effectiveness of systems based on these technologies.
Franceschi, Luca +7 more
openaire +2 more sources
MGM as a Large‐Scale Pretrained Foundation Model for Microbiome Analyses in Diverse Contexts
We present the Microbial General Model (MGM), a transformer‐based foundation model pretrained on over 260,000 microbiome samples. MGM learns contextualized microbial representations via self‐supervised language modeling, enabling robust transfer learning, cross‐regional generalization, keystone taxa discovery, and prompt‐guided generation of realistic,
Haohong Zhang +5 more
wiley +1 more source
The prevailing neglect of cellular hierarchies in current spatial transcriptomics deconvolution often obscures cellular heterogeneity and impedes the identification of fine‐grained subtypes. To address this issue, HIDF employs a cluster‐tree and dual regularization to systematically model cellular hierarchical structures.
Zhiyi Zou +5 more
wiley +1 more source
HiST, a multiscale deep learning framework, reconstructs spatially resolved gene expression profiles directly from histological images. It accurately identifies tumor regions, captures intratumoral heterogeneity, and predicts patient prognosis and immunotherapy response.
Wei Li +8 more
wiley +1 more source
ImmuDef, a novel algorithm to quantitatively evaluate the anti‐infection immune defense function of an individual based on RNA‐seq data via a variational autoencoder (VAE) model. It is validated on 3200+ samples across four immune states with high accuracy. It can serve as a metric for disease severity and prognosis across pathogenic cohorts.
Zhen‐Lin Tan +7 more
wiley +1 more source
Modified particle swarm optimization (MPSO) optimized CNN’s hyperparameters for classification
This paper proposes a convolutional neural network architectural design approach using the modified particle swarm optimization (MPSO) algorithm. Adjusting hyper-parameters and searching for optimal network architecture from convolutional neural networks
Murinto Murinto, Sri Winiarti
doaj +1 more source

