Results 161 to 170 of about 1,403,263 (334)

Determination of selenium speciation in the muscle, kidney, and liver from different animals treated with different selenium supplements by HPLC‐ICP‐MS

open access: yesAnimal Research and One Health
Dietary selenium (Se) deficiency is recognized as a global problem, and exogenous Se supplementation can effectively enrich its levels in animal bodies. Offal tissues are equally important as meat in Se enrichment.
Xiaoqing Guo   +9 more
doaj   +1 more source

Prussian Blue Analog as a Functional Additive for Restoring Sulfide Solid Electrolytes: Enhancing Moisture Stability in All‐Solid‐State Batteries

open access: yesAdvanced Materials, EarlyView.
This work unveils the multifunctional roles of Prussian blue analogs (PBAs) within the LPSCl matrix, where they act as effective moisture scavengers and enable partial recovery of electrochemical performance. In addition, owing to their relatively soft nature, PBAs help mitigate interfacial stress and thereby enhance electrochemical stability and ...
Sumin Ko   +3 more
wiley   +1 more source

Colloid‐Mediated Synthesis of Hierarchically Porous Amorphous Catalyst for Durable Industrial‐Scale Water Electrolysis

open access: yesAdvanced Materials, EarlyView.
A colloid‐mediated electroless plating (CMEP) strategy is proposed to fabricate hierarchically porous, amorphous Fe‐doped NiWB electrocatalysts under ambient conditions. The in situ formation of Fe‐W‐O colloidal species guides the formation of robust, porous catalyst layers with excellent mass transfer and durability, sustaining 500 mA cm−2 for 2000 h,
Yu Liao   +8 more
wiley   +1 more source

Integrated Lead/Iodine Management for Sustainable Perovskite Solar Modules

open access: yesAdvanced Materials, EarlyView.
Perovskite solar modules face environmental risks from lead and iodine leakage. A dual‐function adsorbent—porphyrin‐modified whitlockite nanocomposites—effectively captures iodine and Pb2+, even under severe damage. Combined with a semi‐closed recycling process, it recovers 96.9% high‐purity PbI2 and reduces residual Pb2+ to <10 ppb, offering an ...
Guo‐Bin Xiao   +6 more
wiley   +1 more source

Maximize the Electrocatalytic Activity of Pt Toward Ethanol Oxidation via Engineering PdPt1 Single‐Atom Alloy Skin

open access: yesAdvanced Materials, EarlyView.
Maximizing atomic utilization of Pt is crucial for efficient electrocatalysis. We constructed a tensile‐strained PdPt1 single‐atom alloy (SAA) skin by implanting atomically dispersed Pt onto the surface of intermetallic Pd5Bi3 core‐ultrathin Pd shell octahedrons, fully exposing active Pt atoms to boost ethanol oxidation electrocatalysis.
Wen Chen   +11 more
wiley   +1 more source

Ultrasound in Women's Health: Mechanisms, Applications, and Emerging Opportunities

open access: yesAdvanced Materials, EarlyView.
As healthcare moves toward decentralization, ultrasound technologies are evolving from strictly imaging tools in clinical settings into versatile diagnostic and therapeutic platforms, with growing roles addressing women's health needs. This review highlights how ultrasound's underlying physical mechanisms can be harnessed to reduce disparities in women'
Sarah B. Ornellas   +7 more
wiley   +1 more source

Bio‐Inspired Hierarchical Nanoreactor With Hetero‐Coordinated Fe–P–Co Bridges for Whole‐Pathway‐Regulated Electrocatalytic Oxygen Reduction

open access: yesAdvanced Materials, EarlyView.
A bioinspired Co‐doped Fe2P on N‐doped carbon with a hierarchical eucalyptus‐like nanoarchitecture is engineered to regulate oxygen across the entire electrochemical pathway, achieving a half‐wave potential of 0.938 V vs. RHE, sustaining 373 h of discharge in Al‐air batteries, and delivering an energy density of 3487 Wh/kg.
Qiaoling Xu   +7 more
wiley   +1 more source

ICP-MS [PDF]

open access: yes, 2019
openaire   +1 more source

Efficient Non‐Invasive Rejuvenation of Spent Lithium Iron Phosphate Batteries Through Controlled Overdischarge

open access: yesAdvanced Materials, EarlyView.
This strategy rejuvenates spent lithium iron phosphate battery by non‐invasively targeting Li+ trapped within the solid‐electrolyte interphase (SEI). This method mitigates copper dissolution and reduces Li/Fe antisite defects, achieving 9.56% capacity recovery and 214 cycles lifespan extension. The process requires only 3 MJ kg−1 of energy and emitting
Jinu Song   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy