Results 181 to 190 of about 1,806,688 (345)

Electrochemical Biosensor for Rapid Detection of Acute Rejection in Kidney Transplants

open access: yesAdvanced Healthcare Materials, EarlyView.
A low‐cost, rapid electrochemical immunosensor coated with a novel antifouling nanocomposite enables single‐step, dual‐biomarker profiling directly from unprocessed urine. Application in a clinical study shows accurate discrimination of acute rejection in kidney transplants from other acute kidney injuries via machine learning.
Rohit Gupta   +9 more
wiley   +1 more source

Injectable Dual‐Crosslinked Poly(oligo(Ethylene Glycol) Methacrylate) Hydrogels Inspired by Mussel Adhesion for Cutaneous Wound Healing and Functional Tissue Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Injectable POEGMA‐DA hydrogels, dual‐crosslinked via dopamine self‐polymerization and dynamic hydrazone bonds, provide a safer alternative to invasive wound closure methods and toxic bioadhesives. Mimicking skin‐like mechanics, they achieve effective tissue adhesion for acute dermal wounds, supporting improved healing outcomes, including reducing ...
Gurpreet Kaur Randhawa   +6 more
wiley   +1 more source

Does Ideal Blood Pressure Vary by Cognitive Domain? A UK Biobank Study. [PDF]

open access: yesJ Clin Hypertens (Greenwich)
Lennon MJ   +6 more
europepmc   +1 more source

Growth Hormone‐Loaded 3D Printed Silk Fibroin‐Cellulose Dressings for Ischemic Wounds

open access: yesAdvanced Healthcare Materials, EarlyView.
3D‐printed wound dressings combining carboxymethyl cellulose, silk fibroin, and growth hormone accelerate healing in diabetic ulcers. These bioactive, customizable dressings enhance angiogenesis, cellular proliferation, and immune modulation. Proteomic analysis reveals activation of regenerative pathways and reduced fibrosis, highlighting their ...
Maria Pita‐Vilar   +7 more
wiley   +1 more source

Magnetic Bioprinting and Actuation of Stretchable Muscle Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
Human and murine myoblasts labeled with iron oxide nanoparticles are magnetically bioprinted into wrench‐shaped tissues, which are then anchored between two magnetic needles. Mechanical stretching of these tissues enhances both their maturation and functional performance. Abstract Engineering tissues with precise, long‐lasting shapes and the capability
Noam Demri   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy