Results 311 to 320 of about 1,757,599 (384)

Neutrophil Macrophage Crosstalk via Extracellular Vesicles Drives Reverse Migration in a Fully Human Model of Wound Healing

open access: yesAdvanced Science, EarlyView.
A novel microphysiological system that can mimic sterile or non‐sterile injury demonstrates that macrophage‐derived extracellular vesicles modulate neutrophil migratory responses to these different wound states. The model showed that resolution of inflammation through neutrophil reverse migration is driven by IL‐8 derived from extracellular vesicles ...
Kehinde Adebayo Babatunde   +5 more
wiley   +1 more source

Single‐Cell RNA Sequencing Delineates Renal Anti‐Fibrotic Mechanisms Mediated by TRPC6 Inhibition

open access: yesAdvanced Science, EarlyView.
Single‐cell transcriptomics reveals how TRPC6 inhibition alters renal cell composition and gene expression in CKD. The study uncovers a novel endothelial subpopulation (ECRIN), highlights key inflammatory and fibrotic pathways, and identifies a Prnp‐driven network linked to fibrosis resolution, offering mechanistic insight into TRPC6 as a potential ...
Yao Xu   +12 more
wiley   +1 more source

Overlapping nuclear import and export paths unveiled by two-colour MINFLUX. [PDF]

open access: yesNature
Sau A   +7 more
europepmc   +1 more source

Inhibition and Rescue of Hyperglycemia‐Induced Cellular Senescence by Mitochondrial Transfer from Enucleated Mesenchymal Stem Cell‐Derived Microvesicles for Chronic Wound Healing

open access: yesAdvanced Science, EarlyView.
This study develops enucleated MSC‐derived microvesicles (Mito@euMVs) to deliver functional mitochondria for optimizing wound repair. By efficiently encapsulating mitochondria, Mito@euMVs rejuvenate hyperglycemia‐induced senescent fibroblasts and HUVECs. Using PVA microneedle patches, the therapeutic efficacy of Mito@euMVs is validated in diabetic rats
Zixuan Dong   +3 more
wiley   +1 more source

ALDH4A1 functions as an active component of the MPC complex maintaining mitochondrial pyruvate import for TCA cycle entry and tumour suppression. [PDF]

open access: yesNat Cell Biol
Hsu CC   +14 more
europepmc   +1 more source

The SlDOF9‐SlSWEET17 Module: a Switch for Controlling Sugar Distribution Between Nematode Induced Galls and Roots in Tomato

open access: yesAdvanced Science, EarlyView.
Root‐knot nematode (RKN) disease seriously affects the yield and quality of vegetable crops. SlDOF9‐SlSWEET17 model helps plants resist RKN infection during early stage by switching off the sugar transport capacity of other SlSWEET proteins that are hijacked by RKNs.
Xiaoyun Wang   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy