Results 301 to 310 of about 681,943 (375)

Amyloidogenic Peptide Fragments Designed From Bacterial Collagen‐like Proteins Form Hydrogel

open access: yesAdvanced Functional Materials, EarlyView.
This study identified amyloidogenic sequence motifs in bacterial collagen‐like proteins and exploited these to design peptides that self‐assemble into β‐sheet fibers and form hydrogels. One hydrogel supported healthy fibroblast growth, showing promise for biocompatible materials. Our work demonstrates that bacterial sequences can be harnessed to create
Vamika Sagar   +5 more
wiley   +1 more source

Cell Calcification Models and Their Implications for Medicine and Biomaterial Research

open access: yesAdvanced Healthcare Materials, EarlyView.
Calcification, is the process by which the tissues containing minerals are formed, occurring during normal physiological processes, or in pathological conditions. Here, it is aimed to give a comprehensive overview of the range of cell models available, and the approaches taken by these models, highlighting when and how methodological divergences arise,
Luke Hunter   +5 more
wiley   +1 more source

Oxygen-Assisted B-N Codoping Enables Shallow BN<sub>2</sub> Donors for n-Type Diamond. [PDF]

open access: yesResearch (Wash D C)
Zhang D   +13 more
europepmc   +1 more source

A Novel Microfluidic System for 3D Epidermis and Full‐Thickness Skin Growth for Nanoparticle Safety Assessment

open access: yesAdvanced Healthcare Materials, EarlyView.
This work presents a novel, dynamically perfused, configurable microfluidic system for epidermis‐only (E and full‐thickness skin (FT SoC) growth, emulating human skin structure and barrier function. Upon TiO2 nanoparticle exposure, the system reveals compromised barrier integrity, reduced metabolic activity, increased permeability, and chemokine‐driven
Samantha Costa   +7 more
wiley   +1 more source

Porous Coatings by Vapor Sublimation and Deposition for Molecular Channeling and Filtration in an Interstitial Fluid Microfiltration Device

open access: yesAdvanced Healthcare Materials, EarlyView.
A vapor‐based porous coating applied within nitinol tubes demonstrated complete suppression of cellular and tissue ingrowth, overcoming a major limitation of implantable interstitial fluid collection devices. Molecular channeling and diffusion are analyzed with probe molecules, showing reliable transport in vitro and in vivo. The coating also achieved >
Yu‐Ming Chang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy