Results 201 to 210 of about 1,318,109 (301)

Feature Selection for Machine Learning‐Driven Accelerated Discovery and Optimization in Emerging Photovoltaics: A Review

open access: yesAdvanced Intelligent Discovery, EarlyView.
Feature selection combined with machine learning and high‐throughput experimentation enables efficient handling of high‐dimensional datasets in emerging photovoltaics. This approach accelerates material discovery, improves process optimization, and strengthens stability prediction, while overcoming challenges in data quality and model scalability to ...
Jiyun Zhang   +5 more
wiley   +1 more source

Inverse Engineering of Mg Alloys Using Guided Oversampling and Semi‐Supervised Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
End‐to‐end design of engineering materials such as Mg alloys must include the properties, structure, and post‐synthesis processing methods. However, this is challenging when destructive mechanical testing is needed to annotate unseen data, and the processing methods for hypothetical alloys are unknown.
Amanda S. Barnard
wiley   +1 more source

Modelling in-hospital length of stay: A comparison of linear and ensemble models for competing risk analysis. [PDF]

open access: yesPLoS One
Espinosa-Moreno JC   +5 more
europepmc   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

A geocoded dataset of primary health care clinics in Brazil. [PDF]

open access: yesData Brief
Wichmann B   +3 more
europepmc   +1 more source

The Challenge of Handling Structured Missingness in Integrated Data Sources

open access: yesAdvanced Intelligent Discovery, EarlyView.
As data integration becomes ever more prevalent, a new research question that emerges is how to handle missing values that will inevitably arise in these large‐scale integrated databases? This missingness can be described as structured missingness, encompassing scenarios involving multivariate missingness mechanisms and deterministic, nonrandom ...
James Jackson   +6 more
wiley   +1 more source

Machine Learning‐Enhanced Random Matrix Theory Design for Human Immunodeficiency Virus Vaccine Development

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study integrates random matrix theory (RMT) and principal component analysis (PCA) to improve the identification of correlated regions in HIV protein sequences for vaccine design. PCA validation enhances the reliability of RMT‐derived correlations, particularly in small‐sample, high‐dimensional datasets, enabling more accurate detection of ...
Mariyam Siddiqah   +3 more
wiley   +1 more source

GWAS for primary angle-closure glaucoma identifies loci related to ocular biometry and morphology. [PDF]

open access: yesNat Commun
Luben RN   +38 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy