Results 281 to 290 of about 3,263,826 (343)
On extremizers for adjoint Fourier restriction inequalities and a result in incidence geometry
René Quilodrán
openalex +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
On the foundations of incidence geometry
Geometriae Dedicata, 1988Diagram geometries and chamber systems of various types have been used and investigated intensively in recent years - not only in finite group theory, but in other areas as well. This development has led to a need for some clarification of the variations and generalizations introduced by the many authors, and for a discussion of the different axiomatic
F. Buekenhout, D. Buset
semanticscholar +3 more sources
On the Incidence Geometry of Grassmann Spaces
Geometriae Dedicata, 1999The main result is a characterization of the Grassmann space \({\mathbf G}\) of a projective space \(\mathcal P\). By definition, the point set \(P\) of \({\mathbf G}\) is the set of lines of \(\mathcal P\), the line set \(\mathcal L\) of \({\mathbf G}\) consists of all plane line pencils in \(\mathcal P\).
FERRARA DENTICE, Eva, MELONE N.
openaire +2 more sources
Geometric Hyperplanes of Lie Incidence Geometries
Geometriae Dedicata, 1997Let \(\Gamma=({\mathcal P},{\mathcal L})\) be a geometry of points and lines. A subspace of \(\Gamma\) is a set of points which contains every line that meets it in at least two points. An embedding \(\mu\) of \(\Gamma\) in a finite-dimensional vector space \(V\) consists of a map \(\mu_1\) of \({\mathcal P}\) into the set of 1-subspaces of \(V\) and a
Cooperstein, Bruce N., Shult, Ernest E.
openaire +2 more sources
1981
In this section we shall define the notions of an abstract geometry and an incidence geometry. These are given by listing a set of axioms that must be satisfied. After the definitions are made, we will give a number of examples which will serve as models for these geometries.
Richard S. Millman, George D. Parker
openaire +1 more source
In this section we shall define the notions of an abstract geometry and an incidence geometry. These are given by listing a set of axioms that must be satisfied. After the definitions are made, we will give a number of examples which will serve as models for these geometries.
Richard S. Millman, George D. Parker
openaire +1 more source
Modal logics for incidence geometries
Journal of Logic and Computation, 1997Let \(S=(P,L,\text{in})\) be an incidence plane by the well-known axioms: \(P,L\neq\emptyset\); \(\text{in}\subseteq P\times L\); \(P\cap L=\emptyset\); two points are together incident with one and only one line; each line contains at least two different points; each point belongs at least to two different lines.
Balbiani, Philippe +3 more
openaire +2 more sources

