Results 161 to 170 of about 10,823 (238)
Patient‐specific induced pluripotent stem cells (iPSCs) can be differentiated into alveolar type II cells (iAT2s), expanded as 3D alveolospheres, and grown at physiologically relevant air–liquid interface (ALI). This study shows for the first time the infectability of iAT2s by the influenza A virus (IAV) and proves their responsiveness to the well ...
Lena Gauthier +7 more
wiley +1 more source
Decellularized liver extracellular matrix scaffolds provide a platform to study dormant liver‐metastatic colorectal cancer. They induce reversible dormancy, in combination with nutrient depletion and low dose chemotherapy, through cell cycle arrest and chemotherapy resistance.
Sabrina N. VandenHeuvel +13 more
wiley +1 more source
Radiation‐induced hypothyroidism follows head and neck radiotherapy due to oxidative stress and inflammation. Electrospun polycaprolactone scaffolds containing adenosine have potential to modulate thyroid repair. Scaffolds enhance thyrocyte proliferation, antioxidant enzymes glutathione peroxidase and catalase, reduce senescence and apoptosis markers ...
Maria Heim +5 more
wiley +1 more source
Geometrically Tunable Scaffold‐Free Muscle Bioconstructs for Treating Volumetric Muscle Loss
Volumetric muscle loss is associated with traumatic muscle resulting in permanent functional impairment. Mold‐based, scaffold‐free, high‐density muscle tissue bioconstructs are developed in customizable geometric shapes and sizes. The transplanted rectangular solid‐shaped muscle bioconstructs improved muscle force recovery and tissue regeneration in ...
Bugra Ayan +8 more
wiley +1 more source
This study presents the first human neural organoid culture model capable of rapidly exhibiting long‐distance neural network propagation, thus delivering a system to experimentally investigate large‐scale communication during normal and diseased states.
Megh Dipak Patel +6 more
wiley +1 more source
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Hybrid wrinkled topographies coordinate immune, tissue, and bacterial interactions. The surfaces promote osteointegration, tune macrophage polarization, and inhibit biofilm formation, highlighting a multifunctional strategy for next‐generation implant design.
Mohammad Asadi Tokmedash +4 more
wiley +1 more source
Osteoporosis from long‐term glucocorticoid (GIOP) use elevates susceptibility to fracture. This study shows GCs impair ascorbic acid (AA) metabolism in osteoblasts, collagen synthesis and extracellular matrix integrity. AA enhanced collagen biochemical and mechanical properties and restored osteoblast and endothelial function. These findings underscore
Micaila DE Curtis +19 more
wiley +1 more source
A methacrylamide β‐cyclodextrin‐based nanogel (MACD nGel) is developed to load the antimicrobial drug Metronidazole (MNZ) for topical delivery for the treatment of periodontitis. It is demonstrated that cyclodextrin nanogel (nGel) loaded with metronidazole provides an efficient drug delivery route but also has potential clinical applications and offers
Yanjing Ji +8 more
wiley +1 more source
Models of the human skin must combine the relevant biological contents and suitable biomaterials with the correct spatial organization. Performing compound screening on such in vitro models also requires fast and reproducible production methods of the models.
Elisa Lenzi +7 more
wiley +1 more source

