Results 221 to 230 of about 6,003,011 (295)

POSTOPERATIVE RENAL INFECTION [PDF]

open access: green, 1913
H.Dawson Furniss
openalex   +1 more source

Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations

open access: yesAdvanced Functional Materials, EarlyView.
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan   +4 more
wiley   +1 more source

Bacteria‐Derived Extracellular Vesicle as A “Trojan Horse” for Selective M1 Macrophage‐Targeting in A Multi‐Cellular Entanglement Environment

open access: yesAdvanced Functional Materials, EarlyView.
The temporary transition of macrophages from a pro‐inflammatory phenotype of macrophages (M1) to an anti‐inflammatory phenotype of macrophages (M2) is crucial for tissue repair and regeneration processes. Bacterial outer membrane vesicles (OMVs) are utilized as a “trojan horse” for specific M1 macrophage‐targeting and anti‐inflammatory drug delivery ...
Donglin Cai   +9 more
wiley   +1 more source

Stable, Easy‐to‐Handle, Fully Autologous Electrospun Polymer‐Peptide Skin Equivalent for Severe Burn Injuries

open access: yesAdvanced Functional Materials, EarlyView.
A bioengineered skin equivalent composed of electrospun poly(ε‐caprolactone) (PCL) and the bioactive peptide Fmoc‐FRGD is developed for severe burn treatment. This scaffold promotes full‐thickness skin regeneration by supporting cellular adhesion and integration. In‐vitro and in‐vivo studies show enhanced mechanical stability, accelerated wound closure,
Dana Cohen‐Gerassi   +11 more
wiley   +1 more source

Magnetically Guided Mechanoactive Mineralization Scaffolds for Enhanced Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A 3D‐printed ‘rebar‐concrete’ inspired scaffold (PGS‐P@MGel) synergizes spontaneous biomineralization with magneto‐mechanical stimulation through PDA@Fe3O4‐embedded hydrogel. This dual biointerface activates Piezo1/β‐catenin/YAP mechanotransduction axis, enhancing BMSCs osteogenesis and angiogenesis simultaneously.
Xuran Guo   +10 more
wiley   +1 more source

Real-world observational study of infections in people treated with ocrelizumab for multiple sclerosis. [PDF]

open access: yesJ Neurol
Davies L   +5 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy