Results 221 to 230 of about 257,023 (328)

Synergistic Osteogenesis After Co‐Administration of cmRNAs Encoding BMP‐2 and BMP‐7 Utilizing a Transcript‐Activated Matrix

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that the dual delivery of BMP‐2/‐7 coding cmRNAs for bone healing is demonstrated as feasible, safe, and highly osteogenic. Compared to single BMP‐2 or BMP‐7 cmRNAs, the combination enhances the production of both mineral and organic components of the extracellular matrix when delivered using a collagen‐HA scaffold, supporting ...
Claudia Del Toro Runzer   +7 more
wiley   +1 more source

Quasi‐Periodic Surface Functionalization by Ultra‐Short Pulsed Laser Processing: Unlocking Superior Heat Transfer in Vapor Chambers

open access: yesAdvanced Functional Materials, EarlyView.
Ultra‐short pulsed laser processing (ULSP) enables scalable, open‐air fabrication of self‐organized, quasi‐periodic micro/nanostructures on copper using 100 µm laser beams, orders of magnitude larger than the resulting surface features. Integrated into ultra‐thin, wick‐free vapor chambers, these laser‐functionalized surfaces dramatically enhance ...
Anish Pal   +7 more
wiley   +1 more source

Chronic endometritis diagnosis and fertility outcomes: an old unresolved question. [PDF]

open access: yesReprod Fertil
Ilic J   +9 more
europepmc   +1 more source

Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes

open access: yesAdvanced Functional Materials, EarlyView.
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth   +2 more
wiley   +1 more source

Entering the Strong Coupling Regime in Conventional Organic Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
Organic solar cells convert light into fossil‐free energy, yet they still cannot compete with their silicon counterparts. Strong exciton‐photon coupling can ameliorate some properties of organic solar cells, but it requires additional mirrors that diminish light absorbance. Here, mirror‐free strong exciton‐photon coupling is implemented in conventional
Nicola Peruffo   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy