Results 211 to 220 of about 2,332,742 (352)

Photoluminescent UV Light Modulation via Anisometric Carbon Nanodots for UV–Visible Shutter and UV Sensor

open access: yesAdvanced Functional Materials, EarlyView.
Anisometric carbon nanodots are synthesized directly from a liquid crystal precursor and embedded into polymer network liquid crystals to create soft, multifunctional photonic films. These hybrid devices exhibit polarized photoluminescence, broad UV absorption, and fast, electrically tunable light modulation.
Mangesh D. Patekari   +4 more
wiley   +1 more source

Mid-infrared InAs/InP quantum-dot lasers. [PDF]

open access: yesLight Sci Appl
Wang Y   +26 more
europepmc   +1 more source

Covalent Organic Frameworks for Water Sorption: The Importance of Framework Physical Stability

open access: yesAdvanced Functional Materials, EarlyView.
This study explores the water‐vapor stability of 2D covalent organic frameworks (COFs) with varying pore sizes. Results reveal microporous COFs demonstrate superior stability compared to mesoporous ones, despite lower water uptake. Mesoporous keto‐enamine‐linked COFs show enhanced stability due to intralayer hydrogen bonds, confirmed by simulations and
Wei Zhao   +13 more
wiley   +1 more source

Monitoring of dopant and impurity concentrations in liquid argon by infrared spectroscopy [PDF]

open access: green, 1992
M. Moulson   +4 more
openalex   +1 more source

Light‐Responsive Enzyme‐Loaded Nanoparticles for Tunable Adhesion and Mechanical Wound Contraction

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a photoactivatable enzyme‐loaded mesoporous nanoparticle system (MPDA_PaTy) that enables light‐triggered tunable tissue adhesion and facilitates mechanical wound contraction. Controlled enzymatic crosslinking at tissue or hydrogel interfaces allows on‐demand adhesion.
Junghyeon Ko   +10 more
wiley   +1 more source

Confusion in the infrared: Spitzer and beyond [PDF]

open access: green, 2004
H. Dole   +25 more
openalex   +1 more source

Home - About - Disclaimer - Privacy