Results 151 to 160 of about 4,403,550 (384)

Engineering Porous Hollow Metal‐Poly(Heptazine Imide) Spheres: An Optimized Synthetic Strategy for Controlling Surface, Morphology, and Properties

open access: yesAdvanced Functional Materials, EarlyView.
Hollow poly(heptazine imide) spheres are prepared through a novel approach that integrates hard templating with ionothermal synthesis. This method enables precise control over surface area, pore volume, hydrophilicity, light absorption, band position, and metal composition. These tunable properties facilitate the customized design of semiconductors for
Lingli Ni   +10 more
wiley   +1 more source

Erratum: “Infrared Counterparts toChandraX‐Ray Sources in the Antennae” (ApJ, 658, 319 [2007]) [PDF]

open access: bronze, 2007
David M. Clark   +9 more
openalex   +1 more source

Enhancing Direct Solar Water Splitting via ALD of Multifunctional TiO2/Pt Nanoparticle Coatings With Engineered Interfaces to GaAs/GaInP Tandem Cells

open access: yesAdvanced Functional Materials, EarlyView.
Multifunctional atomic layer deposited coatings and interface treatments enhance direct solar water splitting on GaAs/GaInP tandem cells. Optimized TiO2/Pt nanoparticle bilayers ensure durability and catalytic efficiency with minimal optical losses, while H2 plasma pretreatments maximize photovoltage and interfacial charge extraction.
Tim F. Rieth   +8 more
wiley   +1 more source

Far-infrared rays control prostate cancer cells _in vitro_ and _in vivo_ [PDF]

open access: yes, 2008
We introduce a new effective method to control hormone refractory prostate cancer cells by using an activated rubber/resin form (RB), far-infrared ray emitter, with or without sodium butyrate (SB).
Hiroki Shima   +7 more
core   +2 more sources

IGR J19294+1816: a new Be-X-ray binary revealed through infrared spectroscopy [PDF]

open access: green, 2018
J. J. Rodes‐Roca   +4 more
openalex   +1 more source

Unassisted Photoelectrochemical Hydrogen Production Coupled with Selective Glucose Oxidation Using Metal Halide Perovskite Photoanodes

open access: yesAdvanced Functional Materials, EarlyView.
A metal halide perovskite‐based photoanode integrated with a CoNiFe layered double hydroxide (LDH) cocatalyst is reported for selective glucose oxidation reaction (GOR), achieving simultaneous and unassisted photoelectrochemical hydrogen production. This system delivers high photocurrent density, excellent Faradaic efficiency of GOR, and strong techno ...
Shujie Zhou   +12 more
wiley   +1 more source

Endocytic Programming via Porous Silicon Nanoparticles Enhances TLR4 Nanoagonist Potency for Macrophage‐Mediated Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
Porous silicon nanoparticles (PSiNPs) reprogram macrophage endocytosis of manganese@albumin‐based TLR4 nanoagonists, driving TRIF‐biased TLR4 signaling, eliciting robust proinflammatory responses, and potentiating macrophage‐mediated immunotherapeutic effects against NSCLC.
Xiaomei Zhang   +9 more
wiley   +1 more source

Controlled Aggregation of Pyrene‐Based Supramolecular Nanostructures for Light‐Driven Switchable H2 or H2O2 Production

open access: yesAdvanced Functional Materials, EarlyView.
This work reports the self‐assembly of a pyrene derivative into two distinct nanostructures and their application in visible‐light photocatalysis. The two nanostructures exhibit completely different yet complementary photocatalytic activities, promoting either H2 or H2O2 evolution.
Marianna Barbieri   +6 more
wiley   +1 more source

Bimetallic Nanoparticles as Cocatalysts for Photocatalytic Hydrogen Production

open access: yesAdvanced Functional Materials, EarlyView.
Recent developments have introduced bimetallic nanoparticles as effective cocatalysts for photocatalytic systems. This review explores the rapidly expanding research on bimetallic cocatalysts for photocatalytic production of hydrogen, emphasizing the creation of carrier‐selective contacts, localized surface plasmon resonance effects, methodologies for ...
Yufen Chen   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy