Results 161 to 170 of about 3,077,064 (392)

Endocytic Programming via Porous Silicon Nanoparticles Enhances TLR4 Nanoagonist Potency for Macrophage‐Mediated Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
Porous silicon nanoparticles (PSiNPs) reprogram macrophage endocytosis of manganese@albumin‐based TLR4 nanoagonists, driving TRIF‐biased TLR4 signaling, eliciting robust proinflammatory responses, and potentiating macrophage‐mediated immunotherapeutic effects against NSCLC.
Xiaomei Zhang   +9 more
wiley   +1 more source

Nondestructive Determination of Tocopherol and Tocotrienol in Vitamin E Powder Using Near- and Mid-Infrared Spectroscopy

open access: yesFoods
Vitamin E is an essential nutrient, but its poor water solubility limits food and pharmaceutical applications. The usability of vitamin E can be enhanced via modification methods such as encapsulation, which transforms the physical state of vitamin E ...
Saowaluk Rungchang   +8 more
doaj   +1 more source

Controlled Aggregation of Pyrene‐Based Supramolecular Nanostructures for Light‐Driven Switchable H2 or H2O2 Production

open access: yesAdvanced Functional Materials, EarlyView.
This work reports the self‐assembly of a pyrene derivative into two distinct nanostructures and their application in visible‐light photocatalysis. The two nanostructures exhibit completely different yet complementary photocatalytic activities, promoting either H2 or H2O2 evolution.
Marianna Barbieri   +6 more
wiley   +1 more source

Bimetallic Nanoparticles as Cocatalysts for Photocatalytic Hydrogen Production

open access: yesAdvanced Functional Materials, EarlyView.
Recent developments have introduced bimetallic nanoparticles as effective cocatalysts for photocatalytic systems. This review explores the rapidly expanding research on bimetallic cocatalysts for photocatalytic production of hydrogen, emphasizing the creation of carrier‐selective contacts, localized surface plasmon resonance effects, methodologies for ...
Yufen Chen   +4 more
wiley   +1 more source

CO2 Infrared Spectra on Silicate Dust Grain Analogs: Implications for JWST Observations

open access: yesThe Astrophysical Journal Letters
Carbon dioxide is one of the three most abundant species within the ice mantles around dust grains inside molecular clouds. Since a substantial number of interstellar grains are made of siliceous materials, we have studied the infrared profile of CO _2 ...
Tushar Suhasaria   +4 more
doaj   +1 more source

Infrared and THz spectroscopy of nanostructured dielectrics [PDF]

open access: yesProcessing and Application of Ceramics, 2009
Results achieved using the infrared/THz spectroscopy of various inhomogeneous dielectrics in the Department of Dielectrics, Institute of Physics, Prague, during the last decade are briefly reviewed. The discussion concerns high-permittivity ceramics with
Jan Petzelt
doaj  

Ladder‐Type Benzene‐Perylene Dyes with Efficient Laser Properties in the Near‐IR by Detracting/Activating Low/High Frequency Vibronic Modes

open access: yesAdvanced Functional Materials, EarlyView.
The NNR‐n series of oligomeric nanographenes delivers exceptional emission performance. This work shows that this performance is originated by their ladder‐type structure, which effectively deactivates low‐frequency vibronic modes. This deactivation neglects the main pathway for non‐emissive deactivation, even in the near‐infrared region. The potential
Marcos Díaz‐Fernández   +12 more
wiley   +1 more source

Chromaticity Control in Light‐Emitting Electrochemical Cells via Thermally Activated Emission in Assemblies of a BN‐Doped Pyrenyl Hydrocarbon

open access: yesAdvanced Functional Materials, EarlyView.
The successful color control in light‐emitting electrochemical cells based on highly emissive green‐emitting BN‐doped polyaromatic hydrocarbon with thermally activated NIR emitting assemblies. Abstract This work outlines the synthesis and photo‐/electro‐luminescent behavior of a new C‐shaped BN‐doped benzenoid hydrocarbon using N‐directed borylation in
Luca M. Cavinato   +6 more
wiley   +1 more source

Wood Reconfiguration Enables Broadband Blackbody in Large‐Area, Modular, Optically Welded Carbon Constructs

open access: yesAdvanced Functional Materials, EarlyView.
Wood‐based broadband blackbody is achieved by reconfiguration of wood with lignin nanoparticles prior carbonization. Neglectable reflectivity from the visible to infrared wavelengths is obtained by combining thin nanostructures originated from the wood cell walls with long‐range microcavities in the wood lumina.
Bin Zhao   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy