Results 171 to 180 of about 209,204 (310)

Neural Circuits between Nodose Ganglion and Pulmonary Neuroendocrine Cells Regulate Lung Inflammatory Responses

open access: yesAdvanced Science, EarlyView.
TRPA1+αCGRP+ sensory neurons in the nodose ganglion detect external insults such as lipopolysaccharide (LPS) and interact directly with pulmonary neuroendocrine cells (PNECs), promoting their activation and proliferation. This neural‐epithelial interaction amplifies lung inflammation.
Jie Chen   +16 more
wiley   +1 more source

PD‐1 Inhibits CD4+ TRM‐Mediated cDC1 Mobilization via Suppressing JAML in Human NSCLC

open access: yesAdvanced Science, EarlyView.
CD4+ tissue‐resident memory T cells (TRMs) in non‐small cell lung cancer recruit conventional type 1 dendritic cells via XCL1‐XCR1 signaling, orchestrating antitumor immunity. The costimulatory molecule JAML is essential for this process. PD‐1 blockade restores JAML expression and cDC1 mobilization, while JAML agonists synergize with anti‐PD‐1 therapy,
Zheyu Shao   +16 more
wiley   +1 more source

Regulating Tumor Metabolic Reprogramming with Biomimetic Co‐Delivery of Simvastatin and Kynureninase for Immunotherapy

open access: yesAdvanced Science, EarlyView.
After the intravenous injection of biomimetic and pH/ROS‐responsive PTSK@CRM, the nanoparticles can be accumulated in tumors and release Sim and KYNase to inhibit the tumor growth, regulate the metabolism of cholesterol and Kyn, and reverse the immunosuppressive tumor microenvironment.
Jiaxin Yin   +6 more
wiley   +1 more source

Anti‐PD‐1 Nanobody‐Armored MSLN CAR‐T Therapy for Malignant Mesothelioma: Preclinical and Clinical Studies

open access: yesAdvanced Science, EarlyView.
A novel therapy using engineered immune cells (NAC‐T cells) showed promise for refractory malignant mesothelioma. Based on the encouraging preclinical data, the first‐in‐human trial is initiated, demonstrating tolerable safety and promising anti‐tumor activity (ORR 63.6%, DCR 100%, including one CR).
Yan Sun   +23 more
wiley   +1 more source

Gallium‐Doped MXene Nanozymes Protect Liver Through Multi‐Death Pathway Blockade and Hepatocyte Regeneration

open access: yesAdvanced Science, EarlyView.
This study develops gallium‐doped V2C MXene nanozymes (Ga‐V2C) to treat acetaminophen‐induced liver injury through multi‐death pathway blockade and hepatocyte regeneration. Unlike conventional single‐target therapies like N‐acetylcysteine, Ga‐V2C nanozymes enable oxidative stress suppression, apoptosis, and ferroptosis inhibition, and enhanced ...
Xiaopeng Cai   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy