Results 161 to 170 of about 82,510 (316)

A Machine Learning Perspective on the Brønsted–Evans–Polanyi Relation in Water‐Gas Shift Catalysis on MXenes

open access: yesAdvanced Intelligent Discovery, EarlyView.
Machine learning predicts activation energies for key steps in the water‐gas shift reaction on 92 MXenes. Random Forest is identified as the most accurate model. Reaction energy and reactant LogP emerge as key descriptors. The approach provides a predictive framework for catalyst design, grounded in density functional theory data and validated through ...
Kais Iben Nassar   +3 more
wiley   +1 more source

On Quantum Ergodicity for Higher Dimensional Cat Maps. [PDF]

open access: yesCommun Math Phys
Kurlberg P   +3 more
europepmc   +1 more source

Solving Data Overlapping Problem Using A Class‐Separable Extreme Learning Machine Auto‐Encoder

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
The overlapping and imbalanced data in classification present key challenges. Class‐separable extreme learning machine auto‐encoding (CS‐ELM‐AE) is proposed, which is an enhancement of ELM‐AE that better handles overlapping data by clustering points from the same class together. Applying oversampling addresses imbalanced data.
Ekkarat Boonchieng, Wanchaloem Nadda
wiley   +1 more source

Machine Learning‐Based Estimation of Experimental Artifacts and Image Quality in Fluorescence Microscopy

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
The use of image quality metrics in combination with machine learning enables automatic image quality assessment for fluorescence microscopy images. The method can be integrated into the experimental pipeline for optical microscopy and utilized to classify artifacts in experimental images and to build quality rankings with a reference‐free approach ...
Elena Corbetta, Thomas Bocklitz
wiley   +1 more source

Home - About - Disclaimer - Privacy