Results 71 to 80 of about 34,958 (299)
Guided by the golden ratio, a class of aperiodic architected metamaterials is introduced to address the intrinsic trade‐off between strength and toughness. By unifying local geometric heterogeneity with global order, the golden‐ratio‐guided aperiodic architecture promotes spatial delocalization of damage tolerence regions, leading to more tortuous ...
Junjie Deng +9 more
wiley +1 more source
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Well‐structured graphene hybrid architectures featuring spatially resolved fluorescent properties represent a promising but so‐far elusive synthetic target. A robust and straightforward method for fabricating well‐organized graphene‐dye hybrid nanoassemblies through a combination of reductive patterning and conventional click chemistry is presented ...
Sabrin Al‐Fogra +12 more
wiley +1 more source
In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang +19 more
wiley +1 more source
Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere +5 more
wiley +1 more source
Vacuum‐based deposition is promising for perovskite solar cells to be successfully commercialized. However, co‐evaporation, the most common vapor phase deposition technique, suffers from very low deposition rates. In this work, we reveal that high deposition rates can lead to carbon flakes depositing into the perovskite absorber layers due to material ...
Thomas Feeney +13 more
wiley +1 more source
Electrochemical Formation of BiVO4/BiPO4 Photoanodes for Enhanced Selectivity toward H2O2 Generation
In acidic KPi, V dissolves from the BiVO4 lattice, while adsorbed phosphate reacts with the electrode under an external bias, forming a BiPO4 surface layer. This BiPO4 layer exhibits stronger bicarbonate adsorption, redirecting the water oxidation pathway toward two‐electron H2O2 production.
Kaijian Zhu +12 more
wiley +1 more source
The study proposes a 1‐bit programmable metasurface based on flip‐disc display, named flip‐disc metasurface (FD‐MTS). This new design enables ultralow energy consumption while maintaining coding patterns. It also exhibits high scalability and multifunctional flexibility.
Jiang Han Bao +8 more
wiley +1 more source
A charge injection layer is introduced via RIE to decouple the dual functions of the source electrode: lowering contact resistance through doping to enhance charge injection, while SAM modification on the top surface minimizes leakage current. This strategy enables OSBTs to achieve a high on/off ratio with improved stability and performance.
Hye Ryun Sim +6 more
wiley +1 more source
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley +1 more source

