Results 211 to 220 of about 502,493 (317)

Three‐Dimensional Hierarchical Nanowire‐Networks with Deep‐Focus Tolerance and Adhesion Robustness for Harsh‐Environment SERS Sensing

open access: yesAdvanced Functional Materials, EarlyView.
A 3D nanowire‐network SERS substrate with robust adhesion is developed, featuring pronounced z‐direction optical activity, ultralow detection limit (1.5 × 10−13 M), and excellent signal uniformity (RSD < 10%). Enabled by enhanced light scattering, increased optical density of states, and structural reinforcement, the substrate demonstrates stable, high‐
Jinglai Duan   +6 more
wiley   +1 more source

Injectable Dual‐Network Hydrogel System for Osteochondral Repair Combining Immunomodulation, Mechanical Adaptability, and Enhanced Tissue Integration

open access: yesAdvanced Functional Materials, EarlyView.
A UV‐triggered injectable dual‐network hydrogel is reported as the first application of bletilla striata polysaccharide (BSP) in osteochondral repair. By integrating methacrylamide‐modified BSP and nitrobenzaldehyde‐functionalized hyaluronic acid, the system achieves immunomodulation, mechanical reinforcement, and dynamic tissue adhesion, thereby ...
Jiaming Cui   +10 more
wiley   +1 more source

Large-scale silicon photonics switches for AI/ML interconnections based on a 300-mm CMOS pilot line. [PDF]

open access: yesNanophotonics
Suzuki K   +5 more
europepmc   +1 more source

Interconnection

open access: yes
All architects have their own methods and design processes. An architect‘s method is like his signature. Through the building or the urban structure, you recognise the architect or architects behind it. Jon Adams Jerde, an architect whose architecture has gained a lot of attention since the 1984 Olympic Games in Los Angeles, built his first shopping ...
openaire   +1 more source

From Mechanics to Electronics: Influence of ALD Interlayers on the Multiaxial Electro‐Mechanical Behavior of Metal–Oxide Bilayers

open access: yesAdvanced Functional Materials, EarlyView.
Ultrathin AlOxHy interlayers between aluminum films and polymer substrates significantly improve electro‐mechanical properties of flexible thin film systems. By precisely controlling interlayer thickness using atomic layer deposition, this study identifies an optimal interlayer thickness of 5–10 nm that enhances ductility and delays cracking.
Johanna Byloff   +9 more
wiley   +1 more source

Exciton‐Polaritons in Nanoscale Metal‐Organic Frameworks: A Platform for the Reversible Modulation of Strong Light‐Matter Coupling via the Chemical Environment

open access: yesAdvanced Functional Materials, EarlyView.
Strong exciton‐photon coupling is achieved by integrating porphyrin ligand‐based MOF nanoparticles in optical cavities, as evidenced by pronounced polariton branch anticrossing. The porous nature of the resonator enables precise, reversible tuning via vapor pressure, unlocking unprecedented chemical‐environment controlled dynamic polaritonic platforms ...
Beatriz de Sola‐Báez   +7 more
wiley   +1 more source

Conductive Bonding and System Architectures for High‐Performance Flexible Electronics

open access: yesAdvanced Functional Materials, EarlyView.
This review outlines bonding technologies and structural design strategies that support high‐performance flexible and stretchable electronics. Bonding approaches such as surface‐activated bonding and anisotropic conductive films, together with system‐level architectures including buffer layers and island‐bridge structures, possess distinct mechanical ...
Kazuma Nakajima, Kenjiro Fukuda
wiley   +1 more source

Home - About - Disclaimer - Privacy