Results 181 to 190 of about 258,364 (276)

Enhancing and Stabilizing Hydrogen Catalysis Through [NiFe]‐Hydrogenase Immobilization Within Macroporous Covalent Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
[NiFe]‐hydrogenases efficiently catalyze hydrogen conversion, but their instability limits biotechnological applications. Here it is shown that encapsulating hydrogenase into hierarchical COFs with macro‐ and micropores and functionalized with sulfonic or carboxylic acid groups improves enzyme stability and electron transfer to electrodes.
Islam E. Khalil   +12 more
wiley   +1 more source

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

Interconnected Porous Hydrogels with Tunable Anisotropy Through Aqueous Emulsion Bioprinting

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bioprintable microporous bioink is developed using an aqueous two‐phase system (ATPS) composed of extracellular matrix (ECM) mimetic biopolymers. The ATPS bioink enables the fabrication of interconnected porous architectures with up to 70% porosity, supporting long‐term cell viability and 3D cell alignment, enabling a simultaneous generation of ...
Hugo Edgar‐Vilar   +4 more
wiley   +1 more source

Stretchable p/n‐Pair Thermoelectric Fibers Based on Core (Ag)–Shell (Ag2Se) Structure for Wearable Electronics

open access: yesAdvanced Functional Materials, EarlyView.
Stretchable p/n‐pair Ag@Ag2Se TE fibers are developed for next‐generation fiber‐based electronics. The TE fibers maintain excellent electrical conductivity and a high Seebeck coefficient under strain. Integrated into textiles, they enable simultaneous temperature and strain sensing, as well as energy harvesting, offering great potential for ...
Chaebeen Kwon   +6 more
wiley   +1 more source

Controlled Movement of Soft Actuators using Multi‐Responsive Microgel Arrays and Microcirculatory Systems

open access: yesAdvanced Functional Materials, EarlyView.
Microscale hydrogels (microgels) feature improved mass transport characteristics supportive of fast actuation and chemical tunability amenable to programmed stimuli response. A unique soft actuator architecture is realized by encapsulating microgels in soft microcirculatory systems which enable the convenient delivery of liquid stimuli for powering and
Nengjian Huang   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy