Results 191 to 200 of about 3,926,707 (301)

Positive‐Tone Nanolithography of Antimony Trisulfide with Femtosecond Laser Wet‐Etching

open access: yesAdvanced Functional Materials, EarlyView.
A butyldithiocarbamic acid (BDCA) etchant is used to fabricate various micro‐ and nanoscale structures on amorphous antimony trisulfide (a‐Sb2S3) thin film via femtosecond laser etching. Numerical analysis and experimental results elucidate the patterning mechanism on gold (reflective) and quartz (transmissive) substrates.
Abhrodeep Dey   +12 more
wiley   +1 more source

An agent-based model of metabolic signaling oscillations in Bacillus subtilis biofilms. [PDF]

open access: yesPLoS Comput Biol
Mulder OJ   +4 more
europepmc   +1 more source

Fast‐Responding O2 Gas Sensor Based on Luminescent Europium Metal‐Organic Frameworks (MOF‐76)

open access: yesAdvanced Functional Materials, EarlyView.
Luminescent MOF‐76 materials based on Eu(III) and mixed Eu(III)/Y(III) show rapid and reversible changes in emission intensity in response to O2 with very short response times. The effect is based on triplet quenching of the linker ligands that act as photosensitizers. Average emission lifetimes of a few milliseconds turn out to be mostly unaffected by
Zhenyu Zhao   +5 more
wiley   +1 more source

"Interiores"

open access: yes, 1978
"Este Art?culo pertenece a la secci?n Arte, Letras, Espect?culos. "
openaire   +1 more source

Transparent Inorganic–Organic Bilayer Neural Electrode Array and Integration to Miniscope System for In Vivo Calcium Imaging and Electrophysiology

open access: yesAdvanced Functional Materials, EarlyView.
This study presents the BioCLEAR system, a highly transparent and conductive neural electrode array composed of silver nanowires (AgNWs) and doped PEDOT:PSS, enabling neural recordings with minimal optical artifacts. When integrated with a GRIN lens, this cost‐effective neural implant allows simultaneous electrophysiological recording and GCaMP6‐based ...
Dongjun Han   +17 more
wiley   +1 more source

Selective and Precise Editing of Digital Polymers Through Parallel or Series Toehold‐Mediated Strand Displacement

open access: yesAdvanced Functional Materials, EarlyView.
A sequence‐encoded supramolecular construct containing two accessible toeholds is developed herein for enabling multiple editing operations. By introducing specific input strands, it is possible to selectively erase or rewrite digital content through parallel or series toehold‐mediated strand displacement (PTMSD or STMSD).
Jakub Ossowski   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy