Results 251 to 260 of about 3,872,829 (369)

Elucidating Sodium Ion Storage Mechanisms in Hard Carbon Anodes at the Electronic Level

open access: yesAdvanced Functional Materials, EarlyView.
High‐resolution, multi‐frequency continuous wave, and pulsed Electron Paramagnetic Resonance (EPR) spectroscopy uncover the intricate Na ion storage mechanisms in hard carbon. This study reveals the coexistence of Na ion intercalation and solvent co‐intercalation, alongside a subsequent transition of Na ions from ionic to quasi‐metallic to metallic ...
Qingbing Xia   +5 more
wiley   +1 more source

Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations

open access: yesAdvanced Functional Materials, EarlyView.
Highly selective chemistries are required for fabrication and post‐cross–linking modification of cell‐encapsulating hydrogels used in tissue engineering applications. Isonitrile ligation reactions represent a promising class of bioorthogonal chemistries for engineering hydrogel‐based cellular microenvironments. Isonitrile‐based hydrogels are stable and
Ping Zhou   +2 more
wiley   +1 more source

Scaling‐Up of Structural Superlubricity: Challenges and Opportunities

open access: yesAdvanced Functional Materials, EarlyView.
At increasing length‐scales, structural superlubricity (SSL) faces challenges from physical and chemical energy dissipation pathways. This study reviews recent experimental and theoretical progress on these challenges facing the scaling‐up of SSL, as well as perspectives on future directions for realizing and manipulating macroscale superlubricity ...
Penghua Ying   +4 more
wiley   +1 more source

Electricity Generation From Ambient Water Evaporation in the Absence of Sunlight via PVA‐Based Porous Hydrogels

open access: yesAdvanced Functional Materials, EarlyView.
In this article, a water‐evaporation driven energy harvester is devised that works even in the absence of sunlight. This is achieved by combining PVA hydrogel with thermoelectrics (TEG) to directly capture energy from water evaporation. Under mild conditions (RH 40%, T of 26 °C, and 2.8 m s−1 wind), 1.71 mW (1.02 W m−2) power can be generated, >3 fold ...
Zichen Gong, Ady Suwardi, Jing Cao
wiley   +1 more source

Home - About - Disclaimer - Privacy