Results 81 to 90 of about 203,974 (250)

An FPGA-Based Simple RGB-HSI Space Conversion Algorithm for Hardware Image Processing

open access: yesIEEE Access, 2020
In this paper, a new, low-complexity, easy-to-implement hardware method for color space conversion between the red-green-blue (RGB) and the hue-saturation-intensity (HSI) color spaces called the simple RGB-HSI space conversion (S-SC) algorithm is ...
Shuaiqing Zhi   +3 more
doaj   +1 more source

Advanced circular statistics in biology: Multiple factors, interactions and repeated measures

open access: yesMethods in Ecology and Evolution, EarlyView.
Abstract Circular data is common across biology and the wider sciences, but presents unique analytical challenges due to their wrapped structure, where endpoints coincide (e.g. 360° = 0°). This requires the use of specific statistical methods. Traditional tests like the Rayleigh and Watson U2 tests remain widely used, but lack flexibility in handling ...
Lukas Landler   +2 more
wiley   +1 more source

Bicomplex Numbers and their Elementary Functions</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Cubo</i>, 2012 </span><br><span class="r_content">En este artículo introducimos el algebra de números bicomplejos como una generalizacion del campo de números complejos. Describimos como definir funciones elementales en tales algebras (polinomios y funciones exponenciales y trigonometricas) así como sus </span><br><span class="r_sub"><i>M.E LUNA-ELIZARRARÁS<span id="ma_3" style="display:none">, M SHAPIRO, D.C STRUPPA, A VAJIAC</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_3')">+3 more</a></small></i></span><br><small><a href="https://doaj.org/article/08a611fe6d0e4a16a3ca5e2214e2ff55" target="_blank" rel="nofollow" title="doaj.org/article/08a611fe6d0e4a16a3ca5e2214e2ff55">doaj</a> </small>   <br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.1111/jipb.70143" target="_blank" rel="nofollow">Electron microscopy‐based three‐dimensional subcellular imaging of plant male gametophyte</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Journal of Integrative Plant Biology, EarlyView.</i></span><br><span class="r_content">The Aquilos2 Cryo‐FIB workflows provide practical routes for cryo‐electron tomography and volume imaging in plant structural biology. ABSTRACT Understanding cellular events in three dimensions (3D) is of great importance for the annotation and illustration of biological processes in a contextual way. Imaging techniques based on electron microscopy (EM),</span><br><span class="r_sub"><i>Zhiqi Liu<span id="ma_4" style="display:none">, Zizhen Liang, Mengfei Liao, Yixin Huang, Rui Ma, Jiayang Gao, Weiqi Wang, Tao Ni, Philipp S. Erdmann, Liwen Jiang</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_4')">+9 more</a></small></i></span><br><small><a href="https://onlinelibrary.wiley.com/doi/10.1111/jipb.70143?mi=2or9o2m&af=R&AllField=inverse trigonometric functions&ConceptID=15941&content=articlesChapters&target=default" target="_blank" rel="nofollow" title="wiley.com/doi/10.1111/jipb.70143?mi=2or9o2m&af=R&AllField=inverse trigonometric functions&ConceptID=15941&content=articlesChapters&target=default">wiley</a> </small>   <div id="more_4" style="display:none"><a href="/sci_redir.php?doi=10.1111%2Fjipb.70143" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.1111/jipb.70143'); alert('Copied the doi');">copy doi</a> <small>(10.1111/jipb.70143)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_4')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.3390/math7090833" target="_blank" rel="nofollow">Euler Sums and Integral Connections</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Mathematics</i>, 2019 </span><br><span class="r_content">In this paper, we present some Euler-like sums involving partial sums of the harmonic and odd harmonic series. First, we give a brief historical account of Euler’s work on the subject followed by notations used in the body of the paper.</span><br><span class="r_sub"><i>Anthony Sofo, Amrik Singh Nimbran</i></span><br><small><a href="https://doaj.org/article/248c88094866485d8729bc728404db40" target="_blank" rel="nofollow" title="doaj.org/article/248c88094866485d8729bc728404db40">doaj</a> </small>   <div id="more_5" style="display:none"><a href="/sci_redir.php?doi=10.3390%2Fmath7090833" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.3390/math7090833'); alert('Copied the doi');">copy doi</a> <small>(10.3390/math7090833)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_5')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.1111/jmcb.13255" target="_blank" rel="nofollow">Interest Rate Pegs and the Reversal Puzzle: On the Role of Anticipation</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Journal of Money, Credit and Banking, EarlyView.</i></span><br><span class="r_content">Abstract We revisit the reversal puzzle: a counterintuitive contraction of inflation in response to an interest rate peg. We show that its occurrence is intimately related to the degree of agents' anticipation. If agents perfectly anticipate the peg, reversals occur depending on the duration of the peg.</span><br><span class="r_sub"><i>RAFAEL GERKE<span id="ma_6" style="display:none">, SEBASTIAN GIESEN, DANIEL KIENZLER</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_6')">+2 more</a></small></i></span><br><small><a href="https://onlinelibrary.wiley.com/doi/10.1111/jmcb.13255?mi=2or9o2m&af=R&AllField=inverse trigonometric functions&ConceptID=15941&content=articlesChapters&target=default" target="_blank" rel="nofollow" title="wiley.com/doi/10.1111/jmcb.13255?mi=2or9o2m&af=R&AllField=inverse trigonometric functions&ConceptID=15941&content=articlesChapters&target=default">wiley</a> </small>   <div id="more_6" style="display:none"><a href="/sci_redir.php?doi=10.1111%2Fjmcb.13255" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.1111/jmcb.13255'); alert('Copied the doi');">copy doi</a> <small>(10.1111/jmcb.13255)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_6')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="http://arxiv.org/abs/1311.0853" target="_blank" rel="nofollow">Dunkl operators at infinity and Calogero-Moser systems</a> <b><a href="http://arxiv.org/pdf/1311.0853.pdf" target="_blank" rel="nofollow">[PDF]</a></b> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16">, 2013 </span><br><span class="r_content">We define the Dunkl and Dunkl-Heckman operators in infinite number of variables and use them to construct the quantum integrals of the Calogero-Moser-Sutherland problems at infinity.</span><br><span class="r_sub"><i>Sergeev, A. N., Veselov, A. P.</i></span><br><small><a href="https://core.ac.uk/works/17158691" target="_blank" rel="nofollow" title="core.ac.uk/works/17158691">core</a> </small>   <br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.1111/jtsa.12803" target="_blank" rel="nofollow">A Mixture Transition Distribution Modeling for Higher‐Order Circular Markov Processes</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Journal of Time Series Analysis, EarlyView.</i></span><br><span class="r_content">ABSTRACT This study considers the stationary higher‐order Markov process for circular data by employing the mixture transition distribution modeling. The underlying circular transition distribution is based on Wehrly and Johnson's bivariate joint circular models.</span><br><span class="r_sub"><i>Hiroaki Ogata, Takayuki Shiohama</i></span><br><small><a href="https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12803?mi=2or9o2m&af=R&AllField=inverse trigonometric functions&ConceptID=15941&content=articlesChapters&target=default" target="_blank" rel="nofollow" title="wiley.com/doi/10.1111/jtsa.12803?mi=2or9o2m&af=R&AllField=inverse trigonometric functions&ConceptID=15941&content=articlesChapters&target=default">wiley</a> </small>   <div id="more_8" style="display:none"><a href="/sci_redir.php?doi=10.1111%2Fjtsa.12803" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.1111/jtsa.12803'); alert('Copied the doi');">copy doi</a> <small>(10.1111/jtsa.12803)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_8')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.3390/math12243899" target="_blank" rel="nofollow">The Approximation of Functions of Several Variables with Bounded p-Fluctuation by Polynomials in the Walsh System</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Mathematics</i></span><br><span class="r_content">This paper presents direct and inverse theorems concerning the approximation of functions of several variables with bounded p-fluctuation using Walsh polynomials.</span><br><span class="r_sub"><i>Talgat Akhazhanov<span id="ma_9" style="display:none">, Dauren Matin, Zhuldyz Baituyakova</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_9')">+2 more</a></small></i></span><br><small><a href="https://doaj.org/article/f44a9f98add447f9a5859d9748a6ed70" target="_blank" rel="nofollow" title="doaj.org/article/f44a9f98add447f9a5859d9748a6ed70">doaj</a> </small>   <div id="more_9" style="display:none"><a href="/sci_redir.php?doi=10.3390%2Fmath12243899" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.3390/math12243899'); alert('Copied the doi');">copy doi</a> <small>(10.3390/math12243899)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_9')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.2298/pim1410169k" target="_blank" rel="nofollow">New moduli of smoothness</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16">, 2014 </span><br><span class="r_content">In this paper, we discuss various properties of the new modulus of smoothness \[ \omega^\varphi_{k,r}(f^{(r)},t)_p := \sup_{0 < h\leq t}\|\mathcal W^r_{kh}(\cdot) \Delta_{h\varphi(\cdot)}^k (f^{(r)},\cdot)\|_{L_p[-1,1]}, \] where $\mathcal W_\delta(x) = \</span><br><span class="r_sub"><i>Kopotun, K. A.<span id="ma_10" style="display:none">, Leviatan, D., Shevchuk, I. A.</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_10')">+2 more</a></small></i></span><br><small><a href="https://core.ac.uk/works/17217419" target="_blank" rel="nofollow" title="core.ac.uk/works/17217419">core</a> </small>   <div id="more_10" style="display:none"><a href="/sci_redir.php?doi=10.2298%2Fpim1410169k" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.2298/pim1410169k'); alert('Copied the doi');">copy doi</a> <small>(10.2298/pim1410169k)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_10')">+1 more source</a></small><br></div><div class="r"><div style="margin-bottom:2px;overflow:hidden"><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-geometry/" class="suggestion"onclick="show_loader();"><b>geometry</b></a><br/><a href="/q-mathematical_analysis/" class="suggestion"onclick="show_loader();"><b>mathematical analysis</b></a><br/><a href="/q-trigonometric_functions/" class="suggestion"onclick="show_loader();"><b>trigonometric functions</b></a><br/></div><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-trigonometry/" class="suggestion"onclick="show_loader();"><b>trigonometry</b></a><br/><a href="/q-inverse/" class="suggestion"onclick="show_loader();"><b>inverse</b></a><br/><a href="/q-pure_mathematics/" class="suggestion"onclick="show_loader();"><b>pure mathematics</b></a><br/></div><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-polynomial/" class="suggestion"onclick="show_loader();"><b>polynomial</b></a><br/><a href="/q-computer_science/" class="suggestion"onclick="show_loader();"><b>computer science</b></a><br/><a href="/q-linear_interpolation/" class="suggestion"onclick="show_loader();"><b>linear interpolation</b></a><br/></div></div></div><div class="pagenav"><a href="/q-inverse_trigonometric_functions/p-8/" rel="nofollow"><b>previous</b></a>   <a href="/q-inverse_trigonometric_functions/p-7/" rel="nofollow">7</a>  <a href="/q-inverse_trigonometric_functions/p-8/" rel="nofollow">8</a>  <b>9</b>  <a href="/q-inverse_trigonometric_functions/p-10/" rel="nofollow">10</a>  <a href="/q-inverse_trigonometric_functions/p-11/" rel="nofollow">11</a>   <a href="/q-inverse_trigonometric_functions/p-10/" id="next" rel="nofollow"><b>next</b></a> </div><br></div> </div> <script>document.getElementById('loadingGif').style.display='none';</script><div style="width: 100%; height: 40px; bottom: 0px; background-color: #f5f5f5;"><div style="padding-left: 15px; padding-top: 10px"> <a href="/" rel="nofollow">Home</a> - <a href="/page-about/" rel="nofollow">About</a> - <a href="/page-disclaimer/" rel="nofollow">Disclaimer</a> - <a href="/page-privacy/" rel="nofollow">Privacy</a> </div></div> <link rel="stylesheet" href="//ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/themes/smoothness/jquery-ui.min.css"/> </body> </html>